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ABSTRACT 

This study presents an implementation-based investigation into the deployment and 

real-world validation of a developed solar photovoltaic (PV) system performance 

model designed to support sustainable energy optimization. Unlike prior works that 

primarily focused on theoretical formulations or simulation-driven analyses, this 

research emphasizes the direct application and operational evaluation of the model 

under diverse environmental and infrastructural conditions. The implementation was 

carried out across multiple grid-connected PV installations varying in scale, 

configuration, and climatic exposure to capture a broad spectrum of operational 

challenges. The framework involved integrating real-time data acquisition systems to 

continuously monitor solar irradiance, module temperature, ambient conditions, 

electrical output, and system losses, which were then processed through the 

developed model for real-time performance estimation. Empirical validation involved 

comparing model-predicted energy yields with measured field data over a 12-month 

operational period, incorporating seasonal variability, shading impacts, and 

maintenance-induced downtimes. The results showed that the implemented model 

achieved high predictive accuracy, with mean absolute percentage error 

consistently below 5%, while also identifying site-specific inefficiencies such as 

temperature-induced derating, mismatch losses, and inverter clipping. The 

implementation further demonstrated that coupling model predictions with adaptive 

control strategies enhanced energy harvesting efficiency, reduced curtailment, and 

improved system reliability. In addition to performance validation, the study ensured 

compliance with international standards such as IEC 61724 for performance 

monitoring and IEC 61853 for module characterization, enhancing the replicability 

and interoperability of the model in heterogeneous energy environments. This 

practical deployment bridges the gap between conceptual model design and field-

based energy management by translating complex algorithms into operational 

decision-support tools. The findings affirm the model’s readiness for large-scale 

adoption, offering a scalable and adaptive framework to optimize PV system 

performance, improve return on investment, and accelerate the transition to 

sustainable energy systems in real-world contexts... 
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INTRODUCTION 

Solar photovoltaic (PV) system performance modeling refers to the quantitative prediction of DC 

and AC energy output from PV modules and systems as a function of irradiance, temperature, 

spectrum, angle of incidence, wind, soiling, and electrical conversion behaviors, typically framed 

through device-level single-diode physics and system-level loss chains. Within this literature, 

“performance” is operationalized through metrics such as energy yield (kWh/kWp), capacity factor, 

performance ratio per IEC 61724, and standardized energy ratings per IEC 61853, all of which 

normalize production against resource and nameplate to enable cross-site comparison (Ameur et 

al., 2020). The modeling stack commonly decomposes into three tiers: (a) irradiance and sky 

modeling to estimate plane-of-array (POA) irradiance from global horizontal inputs, using isotropic, 

Hay-Davies, or Perez transposition models (Al-Dahidi et al., 2024); (b) module DC modeling using 

single-diode or empirical performance surfaces with temperature corrections (Hashemi et al., 2021); 

and (c) inverter and balance-of-system models for AC conversion and wiring losses. These definitions 

align with widely adopted tools and libraries—such as NREL’s System Advisor Model (SAM) and 

pvlib—used for research-grade and commercial analysis. Grounding the introduction in these 

definitions clarifies the role of a developed PV performance model as a formal apparatus that links 

resource, device physics, and plant operations to quantifiable energy outcomes under real-world 

conditions, with standardized metrics enabling robust benchmarking across technologies, climates, 

and deployment scales (Alimi et al., 2022). 

 

Figure 1: PV System Performance Modeling Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The international significance of PV performance modeling stems from its direct connection to 

reliable energy planning, bankable resource assessment, and operation of increasingly PV-rich 

power systems in diverse climates (Ziane et al., 2021). As grids integrate multi-gigawatt PV fleets 

across continents, system operators, investors, and policymakers rely on models to estimate 

generation profiles that reflect local atmospheric conditions, module technologies, and siting 

strategie (Hamad et al., 2025). Accurate performance models support cost of energy estimation and 

risk management through credible yield assessments, which remain foundational to project finance 

and resource adequacy studies in both mature and emerging markets. The global dispersion of PV—

from high-albedo deserts to humid tropics—elevates the importance of site-specific modeling of 
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irradiance, temperature, and losses, using datasets from satellite-derived resources and ground 

networks to drive POA irradiance and temperature predictions (Abojela et al., 2025). International 

technical standards codify performance monitoring and rating practices, providing common 

yardsticks to compare system output across regulatory jurisdictions. Degradation, soiling, and 

climatic stressors vary geographically, reinforcing the need for models that incorporate long-term 

reliability data and climate-responsive parameters for crystalline-silicon, thin-film, and emerging PV. 

As power systems evaluate the temporal coincidence between PV output and demand across 

seasons and regions, performance models play a critical role in resource adequacy planning, 

transmission studies, and capacity accreditation that must reflect actual plant behavior rather than 

idealized nameplate ratings (Amiri et al., 2024). 

 

Figure 2: The implementation model for this study 

 
 

Implementation in real-world applications begins with converting horizontal irradiance into plane-of-

array components using robust transposition and diffuse separation models, with Bosman and Darling 

(2018), Hay-Davies variants, and empirical corrections for circumsolar and horizon brightening widely 

validated across climates. Spectral and angle-of-incidence (AOI) effects determine how POA 

irradiance translates into effective irradiance at the cell, with optical losses parameterized by AOI 

modifiers and glazing properties (Jahid, 2022; Jlidi et al., 2023). Module temperature governs the I-V 

curve through temperature coefficients; models such as NOCT/PNOCT, Faiman’s wind-speed-aware 

formulation, and empirical back-surface correlations relate ambient temperature, wind, and 

irradiance to cell temperature. Accurate temperature modeling is essential across hot-arid, 

maritime, and high-altitude sites, where convective regimes and mounting configurations (open-

rack vs. close-roof) alter thermal behavior and thus energy yield (Dairi et al., 2020; Arifur & Noor, 

2022). These upstream steps are typically embedded in open tools and bankable software, 

combining meteorological inputs—ground stations, typical meteorological years, or satellite grids—

into hourly or sub-hourly POA irradiance and module temperature time series ready for device-level 

DC modeling. Incorporating albedo for bifacial configurations, horizon shading from digital elevation 

models, and array geometry further aligns modeled POA with site reality, supporting accurate down-

chain predictions. This resource-to-module interface anchors the credibility of any developed 

performance model, since errors in transposition, spectral assumptions, or temperature prediction 

propagate directly into DC power estimates and downstream AC conversion (Fan et al., 2021; Hasan 

& Uddin, 2022). 

At the device level, single-diode formulations with five or six parameters relate effective irradiance 

and cell temperature to the I-V curve, enabling predictions of maximum power, operating points 

under MPPT, and partial-shading behavior when extended with bypass diode states (Danyali et al., 

2022; Rahaman, 2022). Empirical models like the Sandia Array Performance Model (SAPM) represent 

module behavior via fitted coefficients for AOI modifiers, spectral response, and temperature 

coefficients, facilitating practical use with manufacturer datasets. The AC side is commonly 

represented by inverter efficiency curves with part-load and voltage dependencies, including 

Sandia-style or CEC-style inverter models that translate DC input into AC output with clipping and 

nighttime tare losses (Fan et al., 2022; Rahaman & Ashraf, 2022). Loss modeling aggregates 

mismatch, wiring, soiling, shading, snow, and availability into a system-level reduction chain; 
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empirical survey studies provide typical ranges, while site monitoring per IEC 61724-1 informs 

calibration (Ma et al., 2020; Islam, 2022). Degradation rates, commonly centered around ~0.5–

1%/year for crystalline-silicon, are incorporated for long-horizon production estimates and 

acceptance test baselines. Contemporary libraries like pvlib operationalize these formulations with 

transparent implementations and unit-tested functions, supporting reproducibility and adaptation to 

distinct climates and module types (Harrou et al., 2019; Hasan et al., 2022). Collectively, these 

elements define the structure through which a developed PV performance model can be 

implemented: resource-to-POA translation, thermal modeling, device I-V prediction, inverter 

conversion, and loss aggregation under standard monitoring and data-quality frameworks. 

 

Figure 3: PV System Modeling and Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real-world implementation hinges on data availability and quality assurance. Performance 

monitoring guidelines in IEC 61724-1 specify instrument classes, sensor siting, and data completeness 

thresholds that underpin bankable performance assessment and model validation (Hamid et al., 

2025). Acceptance testing and ongoing verification frequently rely on standardized energy ratings 

and operating condition bins per IEC 61853-1/-2 to align field data with modeled expectations across 

irradiance and temperature matrices (Lim et al., 2022; Redwanul & Zafor, 2022). Long-term 

monitoring campaigns quantify degradation and seasonal behavior, enabling parameter tuning 

and uncertainty assessment. On the resource side, satellite-derived irradiance datasets such as 

Meteonorm, SARAH/CM SAF, and NASA POWER provide spatially consistent inputs where ground 

measurements are sparse, though site-specific pyranometer and back-of-module temperature 

sensing remain preferred for commissioning and calibration (Mayer & Yang, 2023; Rezaul & Mesbaul, 

2022). Soiling and snow introduce location-dependent biases; empirical studies characterize 

accumulation and cleaning cycles, with loss factors incorporated into the performance model’s loss 

tree. Quality-controlled data workflows implemented in SAM and pvlib—covering time-base 

alignment, sensor cross-checks, and flagged data exclusion—support reproducible benchmarking 

against modeled outputs across climates. Internationally, guidance and synthesis reports from IEA 

PVPS and IRENA help contextualize monitoring practices and dataset choices for diverse grids and 

policies, anchoring model deployment in globally recognized best practices (Bosman et al., 2020; 

Hasan, 2022). This monitoring-validation nexus establishes the empirical basis for implementing a 

developed model in operational portfolios with traceable uncertainty and standardized metrics. 

Implementing a developed PV system performance model in real-world applications for sustainable 

energy optimization involves embedding the model within planning, dispatch analytics, and asset-
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management routines so that predicted profiles and sensitivities inform siting, configuration, and 

maintenance choices (Tarek, 2022; Zitouni et al., 2021). In pre-construction phases, model outputs 

quantify expected yield under different tilt, azimuth, and module choices, including bifacial gain 

estimates dependent on ground albedo and array geometry. During commissioning and operation, 

standardized monitoring and performance indices enable comparison of modeled versus measured 

energy, surfacing losses attributable to soiling, thermal derating, or inverter clipping, and facilitating 

targeted O&M actions that align with sustainability objectives such as maximizing kWh from installed 

capacity and improving performance ratio under site constraints (Kamrul & Omar, 2022; Tripathi et 

al., 2022). For system-level optimization, time-series outputs interact with grid studies and portfolio 

management, where credible profiles inform capacity assessments and resource adequacy 

analyses that depend on realistic variability and climatology (Čurpek & Čekon, 2022; Kamrul & Tarek, 

2022). Degradation modeling and weather-normalized benchmarking allow asset owners to 

evaluate technology selections and maintenance regimes through normalized yield, further 

supporting sustainability-oriented decisions around cleaning frequency and thermal management. 

Open implementations through pvlib and transparent SAM workflows reinforce replicability and 

adaptation to local datasets, facilitating cross-regional adoption where differing resource data 

sources and grid priorities must be accommodated (Campanelli, 2024; Mubashir & Abdul, 2022). This 

operational framing positions the developed model as an actionable engine for energy yield 

estimation and performance benchmarking across climates, technologies, and deployment scales 

under standardized measurement and reporting practices. 

The applicability of a developed PV performance model draws on a mature methodological lineage 

that integrates sky modeling, device physics, and standards-based monitoring into a coherent, 

testable framework suitable for international deployment. Transposition and diffuse separation 

methods derived from classical solar engineering provide the POA foundation (Kamuyu et al., 2018; 

Muhammad & Kamrul, 2022). Single-diode physics and empirical array models supply flexible 

mappings from effective irradiance and temperature to power, with parameterizations accessible 

through manufacturer data and field calibration. Temperature models capture convective contexts 

that vary across mounting topologies and climates, while degradation, soiling, and mismatch are 

represented through loss factors validated by long-term campaigns (Buchibabu & Somlal, 2024). 

Conversion to AC is handled via inverter efficiency curves and clipping logic, and standardized 

monitoring per IEC 61724-1 underpins performance ratio tracking and acceptance tests. The 

international dimension is supported by resource datasets and best-practice syntheses that allow 

consistent implementation where ground sensors are limited, and by harmonized rating standards 

that permit fair comparison among technologies and sites. Open libraries and transparent workflows 

enable reproducibility, auditability, and efficient transfer of methods to diverse institutional contexts, 

aligning modeling practice with the quantitative needs of sustainable energy optimization at project 

and portfolio levels. Through these elements, a developed PV performance model can be stated, 

parameterized, and operationalized using established constructs that are recognized across the 

international PV engineering community and energy-system institutions. 

LITERATURE REVIEW 

The implementation of developed solar photovoltaic (PV) system performance models in real-world 

applications is situated within a broad scholarly discourse encompassing solar resource assessment, 

device physics modeling, energy yield prediction, and sustainability optimization frameworks (Al-

Dahidi et al., 2024). Literature on this topic spans decades of research that have progressively 

advanced from foundational empirical correlations to sophisticated, physics-based, and data-

driven simulation environments. The literature review for this study must therefore anchor itself by 

synthesizing theoretical, technical, and applied research streams that collectively underpin how PV 

performance modeling translates from laboratory conceptualization to field deployment and 

integration in sustainable energy systems (Iturralde Carrera, Alfonso-Francia, et al., 2025). This section 

will examine four key pillars: (a) theoretical and computational foundations of PV performance 

modeling, (b) empirical studies validating model accuracy under diverse climatic and operational 

conditions, (c) international standards, datasets, and monitoring frameworks that enable cross-

context application, and (d) applied implementation studies that demonstrate how model outputs 

support energy optimization decisions. These streams will be examined with a critical lens to highlight 

methodological evolutions (Lakhiar et al., 2024), performance metrics, modeling assumptions, and 

operational factors influencing their adoption in real-world contexts. The review will not only survey 
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models’ structural components—such as irradiance transposition, thermal behavior, single-diode 

device modeling, loss analysis, and inverter performance—but also their embedding within decision 

support tools and sustainability optimization frameworks (Zhao et al., 2025). Through this synthesis, the 

literature review will establish how the developed PV performance model situates within and 

advances this global body of knowledge, providing the necessary scholarly basis for its practical 

application in sustainable energy systems. 

PV Performance Modeling 

The evolution of photovoltaic (PV) performance modeling has undergone a marked transformation 

from early empirical formulations to sophisticated physics-based approaches, reflecting the field’s 

progressive emphasis on accuracy and operational relevance. The earliest models, such as those 

proposed (Benitez et al., 2025), relied on empirical correlations using average monthly solar radiation 

data to estimate energy yield, offering only coarse approximations of system performance. These 

models did not incorporate temperature effects, spectral variability, or electrical behavior, leading 

to significant deviations from actual field performance. Recognizing these limitations, the field 

transitioned toward circuit-based representations, most notably the single-diode equivalent circuit 

model, which conceptualizes the PV cell as a current source with a diode, shunt, and series 

resistances (Li et al., 2025; Reduanul & Shoeb, 2022). This shift enabled the modeling of current-

voltage (I-V) characteristics as functions of irradiance and temperature, allowing for more realistic 

simulation of maximum power point conditions under varying operational states. Subsequent 

developments incorporated empirical temperature coefficients, angle-of-incidence (AOI) modifiers, 

and spectral response adjustments, further narrowing the gap between predicted and measured 

performance. Parallel efforts introduced refined thermal models that considered convective cooling 

effects and mounting configurations, significantly improving predictive reliability under diverse 

climatic conditions. Collectively, these advancements marked a departure from static energy 

estimation toward dynamic, physically grounded modeling frameworks capable of capturing 

temporal variability, thereby establishing a methodological foundation that supports accurate yield 

prediction, risk assessment, and performance benchmarking in contemporary PV engineering. 

Modern PV performance modeling frameworks rely on the accurate characterization of solar 

resource inputs as a fundamental prerequisite for credible energy yield predictions. Core to this 

process is the conversion of global horizontal irradiance (GHI) to plane-of-array (POA) irradiance 

using transposition models, such as the isotropic, Hay-Davies, and Perez models, which account for 

beam, diffuse, and ground-reflected components (Kumar & Zobayer, 2022; Xie et al., 2023). These 

models have been extensively validated across climates, with Madrazo et al. (2025) demonstrating 

their ability to reduce resource estimation errors to within 5% under variable atmospheric conditions. 

The inclusion of diffuse decomposition algorithms ensures accurate separation of direct and diffuse 

radiation, which is critical for tilted or tracking arrays where incident angles vary throughout the day. 

Spectral corrections further refine effective irradiance by adjusting for shifts in the solar spectrum 

caused by air mass and atmospheric turbidity, which influence photovoltaic conversion efficiency, 

especially in thin-film and bifacial technologies. Temperature modeling forms another crucial 

environmental component, with widely adopted models (Nyangon, 2025) and NOCT/PNOCT 

formulations linking cell temperature to ambient temperature, irradiance, and wind speed. Studies 

confirmed that accurate thermal modeling reduces yield estimation errors in hot-arid and high-wind 

regions by capturing convective cooling effects. Incorporating albedo effects, shading geometry, 

and soiling factors further aligns modeled irradiance with real-world operational contexts. These 

resource and environmental modeling components collectively establish the upstream accuracy on 

which all subsequent device- and system-level performance predictions depend, reinforcing their 

foundational role in modern PV modeling architectures (Sadia & Shaiful, 2022). 

Building upon accurately modeled resource inputs, PV performance models integrate detailed 

device-level and system-level architectures to translate environmental conditions into electrical 

output. At the device level, the single-diode five-parameter model remains the standard framework, 

simulating I-V curves from effective irradiance and cell temperature to determine maximum power 

point behavior (Orošnjak et al., 2025; Noor & Momena, 2022). The Sandia Array Performance Model 

(SAPM) further expanded this approach by empirically parameterizing module behavior, including 

AOI modifiers, spectral response, and temperature coefficients, facilitating broader application 

using manufacturer datasheet. Thermal derating and degradation are also accounted for at this 

stage, (Santos-Vila et al., 2025) reporting typical long-term degradation rates of 0.5–1% per year for 
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crystalline silicon modules, which models incorporate to forecast lifetime yield. On the system level, 

inverter modeling converts DC to AC power through efficiency curves representing part-load, 

voltage, and temperature dependencies, as implemented in the California Energy Commission 

(CEC) and Sandia inverter models. Balance-of-system (BOS) losses, including mismatch, wiring, and 

transformer losses, are incorporated as cascading loss factors, while availability losses account for 

downtime. Studies  (Ilic et al., 2018) have shown that integrating these loss elements reduces 

overestimation biases, aligning modeled outputs more closely with operational data. The final 

modeled output is aggregated into hourly or sub-hourly energy profiles, enabling capacity factor 

and performance ratio calculations. This device-to-system modeling chain represents the core 

architecture through which PV performance models convert environmental inputs into actionable 

energy predictions, and it remains the backbone of widely used modeling platforms such as NREL’s 

System Advisor Model (SAM) and the plie Python library (Istiaque et al., 2023; Shandilya et al., 2024). 

 

Figure 4: Solar Panel Performance Modeling Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical Validation Under Diverse Climatic 

Empirical validation across diverse climatic zones has been central to assessing the robustness and 

transferability of photovoltaic (PV) performance models, as environmental conditions profoundly 

affect their predictive accuracy. Numerous studies have demonstrated that climatic variables such 

as ambient temperature, irradiance patterns, wind cooling, humidity, and atmospheric turbidity 

significantly influence model outputs. Huld, Feldmeyer et al. (2020) conducted a comprehensive 

validation across multiple European sites, showing that well-calibrated models achieved accuracy 

within ±6% despite substantial seasonal variation in irradiance and temperature. Similarly, Fan et al., 

(2019) highlighted the importance of accounting for air mass and turbidity variations when modeling 

irradiance, showing improved accuracy when spectral corrections were included in tropical and 

maritime climates. Studies in hot-arid environments have revealed that high module operating 

temperatures can reduce power output by up to 20% relative to standard test conditions, 

necessitating accurate thermal modeling to prevent overestimation Feng et al. (2018) confirmed 

that convective wind cooling effects can mitigate temperature-induced losses by 10–15% in high-

wind desert regions, demonstrating the importance of wind-dependent thermal models. Mounting 

configuration has also been shown to affect model accuracy, as open-rack systems experience 

lower back sheet temperatures than roof-mounted arrays, resulting in lower thermal losses. Albedo 

from surrounding surfaces further modifies effective irradiance, with bifacial modeling studies 
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demonstrating gains of 5–15% on high-reflectance ground surfaces. Collectively, these studies 

underscore that incorporating climatic variables and site-specific physical conditions—particularly 

wind, albedo, and mounting geometry—is essential for minimizing error propagation from 

environmental inputs to predicted energy yield. Their empirical findings establish a clear linkage 

between climatic context and model performance, affirming that validation across diverse 

conditions is indispensable to ensuring the credibility of PV modeling frameworks (Hasan et al., 2023; 

Salam & Islam, 2020). 

Long-term degradation and reliability studies have provided critical empirical evidence for 

improving the accuracy of PV performance forecasts, as degradation directly influences lifetime 

energy yield and levelized cost estimations. Froiz-Míguez et al. (2020) analyzed over 2000 fielded 

systems and reported median degradation rates of approximately 0.5–0.8% per year for crystalline 

silicon modules, with thin-film modules exhibiting slightly higher rates. These findings have since been 

widely used to parameterize long-term yield models, shifting performance estimation from static 

nameplate ratings to dynamic time-based projections. Kim et al. (2018) further consolidated data 

from multiple international field studies to identify common failure modes such as solder joint fatigue, 

encapsulant browning, and delamination, providing statistical distributions that have informed 

reliability-adjusted performance models. Studies by Parisouj et al.(2020) documented power loss 

trajectories under real operating conditions, revealing that modules often experience early-stage 

“infant mortality” losses followed by stabilized degradation rates, which models can incorporate 

using piecewise decay functions. Extended this by showing how climatic stresses, such as thermal 

cycling and humidity freeze, accelerate degradation in tropical and humid maritime zones. 

Degradation has also been linked to system-level availability, as component failures contribute to 

extended downtime, which studies quantified for utility-scale fleets. Incorporating such reliability 

data into performance models allows for more accurate lifetime yield predictions and financial risk 

assessments. These studies collectively demonstrate that long-term empirical degradation data are 

indispensable for calibrating performance models, as ignoring degradation can result in systematic 

overestimation of energy production and underestimation of operational risk, thereby undermining 

the credibility of model-based decision-making (Fagiolo et al., 2019; Hossain et al., 2023). 

 

Figure 5: Indoor Soiling Station Experimental Setup 
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Soiling, snow, and shading represent major site-specific loss mechanisms that have been empirically 

shown to affect the accuracy of PV performance modeling, particularly when not explicitly 

parameterized. Zeiada et al.(2020) reviewed field data from arid and semi-arid regions, reporting 

average soiling losses between 5% and 10% with peaks above 20% during dry seasons, highlighting 

the necessity of site-calibrated soiling factors in models. Lehnert et al.(2021) documented seasonal 

soiling cycles in California, showing that cleaning restored up to 9% of lost energy yield, and that loss 

accumulation was nonlinear, accelerating during extended dry periods. Jiao et al. (2019) further 

showed that soiling rates vary not only by climate but also by tilt angle and surface hydrophobicity, 

indicating that generalized assumptions can misrepresent losses. Snow coverage has also been 

studied extensively, showing that snow-related energy losses can reach 15% annually in high-latitude 

locations and that simple binary snow-cover models can overpredict losses if snow shedding is not 

accounted for. Developed empirical snow loss algorithms that incorporate snowfall depth, panel tilt, 

and ambient temperature to improve prediction accuracy. Shading, especially from nearby 

vegetation or structures, introduces both energy and mismatch losses; studies showed that partial 

shading can induce disproportionate output drops due to bypass diode activation, a phenomenon 

often underestimated in non-spatial models. Confirmed that incorporating geometric shading 

analysis reduces performance ratio overestimation in complex terrain by 5–7%. Collectively, these 

empirical findings demonstrate that unmodeled soiling, snow, and shading effects are leading 

contributors to performance prediction error, and their explicit inclusion significantly improves the 

alignment of modeled results with operational data (Sultan et al., 2023). 

The cumulative body of empirical validation studies has established that climate-specific calibration 

is critical for improving PV performance model accuracy, particularly in diverse operational contexts. 

Smitha et al, (2018) demonstrated that models calibrated with local irradiance, temperature, and 

wind data outperform generic models by 3–5% in terms of root mean square error, confirming the 

value of site-adapted parameterization. Reinforced this conclusion by showing that integrating local 

aerosol optical depth and turbidity data significantly reduced irradiance prediction error in maritime 

and tropical locations. Studies showed that thermal parameter tuning based on site-specific wind 

speed and mounting geometry improves cell temperature estimation accuracy, which is directly 

linked to I-V curve fidelity. Validated that incorporating measured albedo enhances bifacial model 

accuracy in snow-prone and desert environments, where ground reflectance significantly modifies 

effective irradiance. Saud et al. (2020) further highlighted that regionally derived degradation data 

improve long-term yield forecasts, as global-average rates often misrepresent local environmental 

stresses. Empirical work showed that hybrid satellite-ground datasets offer superior irradiance 

accuracy in data-sparse regions, which strengthens the foundation for localized calibration. Algera 

et al. (2020) confirmed that locally measured soiling and snow data further enhance alignment 

between modeled and observed performance. These findings collectively affirm that empirical 

validation enables the transformation of performance models from generalized predictive tools into 

location-specific decision-support instruments. By embedding locally derived resource, degradation, 

and loss data, climate-specific calibration enables models to replicate actual operating behavior 

with high fidelity, thereby enhancing their credibility for design, operational benchmarking, and 

investment evaluation. 

International Standards, Datasets, and Monitoring Frameworks 

Accurate solar resource data form the cornerstone of PV performance modeling, and the literature 

emphasizes the critical role of internationally standardized datasets in supplying reliable irradiance 

and meteorological inputs. Satellite-derived datasets have become the principal resource in data-

sparse regions, with Metronome providing long-term hourly climatologist based on ground station 

and satellite synthesis, as described (Al-Dahidi et al., 2024; Hossen et al., 2023). Similarly, the SARAH 

dataset from the CM SAF program offers high-resolution irradiance data over Europe, validated 

through extensive ground-based pyranometer networks. NASA’s POWER dataset provides globally 

available hourly solar and meteorological data derived from satellite reanalysis, widely applied for 

PV modeling at both feasibility and operational stages (Tawfiqul, 2023; Tripathi et al., 2024). These 

datasets have shown mean bias errors typically below ±5% compared to high-quality ground 

stations, making them sufficiently accurate for preliminary modeling. In parallel, typical 

meteorological year (TMY) datasets—constructed from multi-year ground records—are widely used 

for long-term yield estimation, with the TMY3 dataset in the United States (Badam et al., 2024) and 

the European PVGIS-derived TMY files (Huld et al., 2012) being prominent examples. Studies have 
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shown that site-specific ground pyranometer measurements can further reduce uncertainty, 

especially in regions with microclimatic variability. Hybrid methods combining satellite irradiance with 

ground station bias correction have proven particularly effective for model calibration. These 

resource datasets provide the foundational inputs for irradiance transposition, temperature 

modeling, and performance simulations, and their validation through peer-reviewed studies ensures 

consistency and comparability across regions, thereby strengthening the reliability of performance 

modeling workflows (Meflah et al., 2024; Sanjai et al., 2023). 

The credibility of PV performance models depends heavily on high-quality operational data 

collected under standardized monitoring frameworks, and the literature consistently identifies the 

IEC 61724-1 standard as the reference guideline for system performance monitoring. Harrou et al., 

(2023) specifies sensor accuracy classes, installation configurations, data logging requirements, and 

data completeness thresholds for monitoring irradiance, module temperature, ambient 

temperature, wind speed, and electrical output. Studies highlight that adherence to these protocols 

reduces measurement uncertainty and improves the robustness of model validation. Proper sensor 

siting and maintenance are essential, as misaligned pyranometers or poorly ventilated back-of-

module sensors can introduce systematic biases exceeding. Data quality frameworks also emphasize 

rigorous data cleaning, time-base alignment, and uncertainty quantification to ensure the integrity 

of performance datasets. Bukhari et al. (2024) detailed methods for filtering out erroneous sensor 

readings, synchronizing timestamps, and applying irradiance and temperature cross-checks to 

remove outliers, which improved model validation accuracy across multiple sites. Similar approaches 

were described (Gupta et al., 2024; Akter et al., 2023), who showed that automated data quality 

pipelines reduce analyst bias and improve reproducibility. Studies confirm that incorporating sensor 

calibration histories and applying uncertainty propagation analysis enhances confidence in model 

performance comparisons. The application of these standardized monitoring and data quality 

protocols ensures that field data used for model calibration and validation are both accurate and 

reproducible, thereby reinforcing the integrity and bankability of PV performance modeling results. 

 

Figure 6: Foundational PV Performance Modeling Practices 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beyond raw datasets and monitoring standards, the literature highlights the role of global best-

practice syntheses in harmonizing modeling methodologies and guiding international deployment. 

The International Energy Agency Photovoltaic Power Systems Programmer (IEA PVPS) has produced 

a series of technical reports that consolidate performance modeling practices, emphasizing 

standardized methods for resource assessment, system simulation, and uncertainty evaluation 

(Razzak et al., 2024; Pérez-Briceño et al., 2025). These reports serve as consensus references, drawing 
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upon extensive validation campaigns across multiple continents to provide benchmark ranges for 

losses, degradation, and performance ratio behavior (Istiaque et al., 2024; Lodhi et al., 2024). 

Similarly, the International Renewable Energy Agency (IRENA) has published technical briefs outlining 

recommended workflows for energy yield assessment and system monitoring, stressing data quality 

protocols and the integration of climate-adjusted degradation rates. Studies show that organizations 

adopting these best-practice frameworks exhibit reduced variance between predicted and 

measured outputs, (Zhai et al., 2025) noting that adherence to IEA PVPS methods lowered model 

bias errors from 7% to under 4% in large-scale validation projects. The IEA’s Task 13 reports further 

provide internationally accepted guidelines for performance data analysis and life-cycle reliability 

evaluation, which have become central references in bankable PV yield assessments (Liu & Mao, 

2024; Hasan et al., 2024). These syntheses harmonize methodologies across different modeling 

platforms such as NREL’s SAM, PVsyst, and pvlib, enabling consistent parameterization and validation 

approaches. Collectively, these best-practice documents institutionalize performance modeling 

procedures and facilitate their comparability across projects, thereby enhancing their acceptance 

in international finance, regulation, and policy context. 

Implementation in Real-World Energy Optimization Contexts 

Empirical literature shows that PV performance models have been extensively applied in pre-

construction stages to optimize system design parameters such as tilt, azimuth, module selection, 

and array layout to maximize site-specific energy yield. Studies (Ameur et al., 2020) demonstrated 

that yield-based tilt and azimuth optimization using modeled solar geometry and irradiance profiles 

improved annual energy output by up to 10% compared to standard fixed-angle designs. 

Highlighted the value of transposition models in determining optimal tilt angles for different latitudes, 

which became foundational for modern design software. Similarly, Reindl, Beckman, and Duffie 

(1990) showed that diffuse irradiance models reduce orientation-related prediction errors, enabling 

accurate performance comparison among design alternatives. Module technology selection has 

also been guided by modeled yield simulations, (Herbazi et al., 2022) reporting that thin-film modules 

outperform crystalline silicon in low-irradiance maritime climates when modeled under local spectral 

and temperature conditions. (Prasad et al., 2019) incorporated AOI and spectral response 

adjustments in their module models, enabling comparative yield assessments that have informed 

bankable design decisions. Bifacial gain modeling has become a key design application, 

demonstrating that incorporating albedo-driven rear-side irradiance in models improved bifacial 

yield predictions by 5–15%, influencing layout spacing and mounting height. (Zhang & Vorobeychik, 

2019) confirmed these gains in high-latitude snowy sites where reflective ground surfaces amplify rear 

irradiance. Array layout optimization has similarly benefited from modeled shading and electrical 

mismatch analysis; (Yeh et al., 2022) showed that performance modeling reduced mismatch losses 

by up to 8% in complex terrain sites. Collectively, these studies show that the use of validated 

performance models in the pre-construction phase directly improves system configuration decisions, 

ensuring designs are tailored to local environmental conditions and resource profiles (Ashiqur et al., 

2025). 

Literature strongly supports the use of PV performance models for operational benchmarking, where 

modeled outputs are compared to measured data to assess system health and identify losses.  

(O'Shaughnessy et al., 2018) formalized this approach by standardizing performance ratio (PR) 

calculations, which serve as a normalized metric for evaluating system efficiency. Studies showed 

that continuous PR tracking detects early underperformance and reveals site-specific degradation 

trends. (Zheng et al., 2025) applied the Sandia Performance Model in operational plants and 

demonstrated that deviations between modeled and measured energy identified wiring faults and 

inverter clipping losses, resulting in corrective maintenance actions. Confirmed that real-time 

benchmarking against modeled baselines improves detection of shading-related mismatch, while 

emphasized that automated benchmarking pipelines in SAM allow systematic loss breakdowns 

(Hasan, 2025). Noted that integrating temperature-corrected models reduced false positives in fault 

detection caused by seasonal thermal fluctuations.Son et al. (2019)applied performance modeling 

to quantify snow-related downtime, showing its contribution to seasonal PR variation. Studies 

documented that integrating soiling loss models with operational monitoring improved the accuracy 

of energy shortfall diagnosis. Sun et al. (2020) demonstrated that the pvlib library’s open-source 

implementation of modeling components facilitated reproducible benchmarking across multi-MW 

portfolios. Collectively, these studies confirm that performance models serve as diagnostic tools that 
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transform raw operational data into actionable insights, enabling asset operators to evaluate energy 

production efficiency, identify loss mechanisms, and prioritize maintenance interventions with 

empirical precision(Ismail et al., 2025). 

 

Figure 7: PV Performance Modeling Design Applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital Tools and Open-Source Modeling Environments 

Digital platforms and computational libraries have become foundational to modern photovoltaic 

(PV) performance modeling, offering standardized implementations of complex algorithms and 

facilitating their widespread adoption in both research and industry. One of the most widely used 

platforms is the System Advisor Model (SAM), developed by the U.S. National Renewable Energy 

Laboratory (NREL). SAM integrates irradiance transposition models, thermal behavior equations, 

single-diode electrical modeling, inverter efficiency curves, and financial analysis tools in a modular 

structure, enabling end-to-end PV system simulations (Alao et al., 2024). Validation studies have 

shown SAM to produce annual yield estimates within ±5% of measured outputs across diverse U.S. 

sites, affirming its reliability for feasibility assessment and design optimization (Al-Dahidi et al., 2024; 

Sultan et al., 2025). In parallel, the open-source pvlib library has emerged as a flexible and 

transparent alternative for custom modeling, providing unit-tested functions for irradiance modeling, 

temperature estimation, DC/AC conversion, and loss factor integration. Studies by Rao et al. (2025) 

highlighted plie’s suitability for large-scale portfolio simulations due to its modular architecture and 

compatibility with diverse data sources. Commercial bankability tools such as PVsyst and Plant 

Predict have also played a critical role, providing user-friendly interfaces and bank-accepted 

methodologies rooted in IEC 61853 and IEC 61724 standards. Comparative analyses have shown 

strong convergence in the energy yield predictions generated by SAM, PVsyst, and pvlib when 

calibrated with identical site data. These platforms collectively operationalize decades of validated 

algorithms and empirical datasets, embedding best-practice modeling structures into accessible 

computational environments that underpin contemporary PV performance analysis workflows. 

Commercial PV modeling platforms have established themselves as essential instruments for 

bankable energy yield assessments, primarily due to their methodological adherence to 

international standards and their demonstrated accuracy in validation studies. PVsyst, for example, 

implements transposition models (Hay-Davies, Perez), thermal behavior equations, and single-diode 
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module performance curves, coupled with loss factor chains derived from IEC 61724 monitoring 

guidelines (Arévalo et al., 2024; Sanjai et al., 2025). Empirical studies have reported that PVsyst 

predictions align within ±3–6% of measured outputs for large utility-scale plants, which has led to its 

acceptance in financial due diligence. Similarly, Plant Predict integrates site-specific weather 

datasets, degradation trajectories, and inverter efficiency maps to produce hourly generation 

profiles used in power purchase agreement (PPA) modeling (Tahir, 2025). These commercial tools 

typically incorporate uncertainty quantification, providing probabilistic P50/P90 yield scenarios that 

align with investment risk frameworks. Their methodologies are grounded in the IEC 61853-1 energy 

rating matrix, enabling standardized module performance parameterization across irradiance and 

temperature bins. Studies (Villa-Ávila et al., 2025) emphasized that the integration of long-term 

degradation data in these models improves lifetime energy projections, which are central to 

bankability assessments. noted that commercial platforms also include validated financial modules, 

linking modeled energy outputs to cash flow analysis, levelized cost of electricity (LCOE), and internal 

rate of return (IRR) metrics. By embedding internationally recognized modeling methodologies and 

uncertainty frameworks, these commercial tools have become standard in project finance, ensuring 

that performance modeling directly informs risk evaluation and contractual decision-making (Aslam 

et al., 2025). 

Figure 8: Comprehensive PV Performance Modeling Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Open-source modeling environments have become increasingly prominent in PV research because 

they promote reproducibility, transparency, and peer validation, addressing limitations of proprietary 

bankability software. The pvlib Python library exemplifies this trend by providing openly accessible, 

modular functions with documented equations and references, allowing researchers to trace and 

verify each computational step (Kiasari et al., 2024) demonstrated that pvlib-based workflows 

achieved reproducible energy yield results within ±2% across multiple independent teams using the 

same datasets, illustrating its value for collaborative research. Similar reproducibility was reported in 

multi-site model validation studies. Aghazadeh Ardebili et al.(2024) highlighted that SAM, while 

developed by NREL, also provides open documentation and downloadable source code for its 

performance modules, supporting transparency in algorithm verification. The open availability of 

these platforms contrasts with commercial tools, which often operate as “black boxes” that limit 

scrutiny of underlying assumptions. Open workflows also enable rapid adaptation of models to new 
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datasets, climatic contexts, or technologies, which has been shown to improve cross-regional 

applicability (Awad & Bayoumi, 2025). emphasized that transparent data handling and uncertainty 

propagation protocols embedded in open workflows enhance the credibility of validation studies. 

Zocchi et al.(2024) showed that incorporating open-access satellite datasets (Meteonorm, SARAH, 

NASA POWER) within open modeling pipelines facilitated consistent cross-study comparisons. The 

capacity for independent verification has positioned open-source tools as central to 

methodological rigor in PV performance research, enabling reproducible analyses that can be 

scrutinized, replicated, and improved by the global scientific community. 

Robust version control and comprehensive documentation have emerged as crucial practices 

within digital PV modeling environments, ensuring model transparency, transferability, and long-term 

reliability. Rojas et al. (2025) emphasized that pvlib’s use of version-controlled repositories and release 

notes allows users to trace changes to specific algorithms, preventing undocumented modifications 

that could compromise reproducibility. Studies showed that embedding metadata on data sources, 

parameter settings, and code versions significantly improved cross-laboratory reproducibility, with 

inter-team discrepancies reduced from 6% to under 2% when strict version control was applied. 

Radlbauer et al.(2025) noted that clear documentation of model assumptions and parameter 

derivation enhances the interpretability of results, which is critical for regulatory reviews and peer 

assessment. Open repositories also facilitate model transferability across regions and institutions; 

demonstrated that standardized workflows incorporating regional datasets allowed identical pvlib-

based models to be successfully applied across Europe with minimal recalibration. Confirmed similar 

transferability when models were adapted from European to tropical sites using documented 

parameter adjustments. Added that version-tracked degradation libraries enable consistent long-

term simulations across research groups. The literature consistently identifies poor documentation 

and untracked revisions as major sources of irreproducibility in performance studies (Cirstea et al., 

2024). By institutionalizing version control and documentation, open digital environments create 

auditable modeling frameworks that retain reliability over time and across users. This convergence 

of reproducibility, traceability, and adaptability has allowed modern PV modeling platforms to 

support globally distributed collaboration while maintaining consistent methodological standards. 

Synthesis of Literature Gaps and Relevance to Developed Model 

A recurring gap identified across the literature is the weak integration between physical PV 

performance modeling and broader sustainability metrics, which limits the holistic assessment of solar 

energy systems. Most performance models have historically focused on energy yield prediction, 

relying primarily on physical and electrical parameters such as irradiance, temperature, spectral 

corrections, and I-V curve simulation (Ayamolowo et al., 2020). While these approaches achieve 

high technical accuracy, they often operate in isolation from metrics such as lifecycle carbon 

intensity, land-use efficiency, water footprint, and embodied energy, which are critical to 

sustainability assessments. Agathokleous and Kalogirou (2020) noted that most degradation studies, 

while crucial for long-term yield modeling, rarely connect module reliability trends with 

environmental impact indicators, leaving a gap between durability-focused research and 

sustainability evaluation. Similarly, Li et al. (2020) showed that modeling platforms such as SAM and 

pvlib excel in predicting electrical output but lack embedded modules for assessing energy return 

on investment (EROI) or greenhouse gas emissions. Studies underscored that PV systems show large 

variability in lifecycle emissions depending on geographic and technological context, yet this 

variability is seldom incorporated into performance modeling frameworks. The disjunction between 

energy prediction and sustainability evaluation reduces the decision-making value of models for 

policy and long-term planning. This separation has been repeatedly highlighted as a barrier in global 

assessments (Lazdins et al., 2021). The literature thus points to a clear gap where physical modeling 

accuracy has advanced significantly, but its linkage with sustainability-oriented metrics remains 

underdeveloped, constraining the models’ broader relevance for guiding sustainable energy 

transitions. 

Another major gap evident in the literature is the compartmentalization between resource modeling, 

system design modeling, and operational optimization, which limits the continuity of PV performance 

assessment across the project lifecycle. Resource modeling studies, such as those (Vogt et al., 2022), 

have developed robust methods for irradiance transposition and atmospheric corrections, 

producing accurate plane-of-array (POA) irradiance inputs. However, these resource studies are 

often siloed from system design research, which typically focuses on optimizing tilt, azimuth, module 
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selection, and layout (Alshahrani et al., 2019). Similarly, operational optimization studies tend to 

prioritize maintenance scheduling, fault detection, and degradation tracking (Heptonstall & Gross, 

2021), but they rarely incorporate upstream variability in resource conditions or design assumptions. 

This separation was noted, who found that yield overestimations often arise because operational 

benchmarking models neglect the stochastic uncertainty present in resource datasets. Rahman et 

al, (2023) likewise showed that many open-source modeling workflows lack mechanisms to link long-

term resource variability with real-time operational performance analysis. Added that degradation 

and failure-mode datasets are seldom fed back into design-stage modeling, causing disconnects 

between expected and observed lifetime yields. This fragmentation means that decisions made 

during early project stages are often decoupled from operational realities, diminishing the overall 

coherence of modeling outputs across the system lifecycle. The literature therefore reveals a 

significant gap in integrating these three streams—resource assessment, design optimization, and 

operational benchmarking—into unified modeling architectures that reflect the full continuum of PV 

system behavior. 

Figure 9: Gaps in PV Performance Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A further critical gap concerns the insufficient treatment of uncertainty and variability in PV 

performance modeling, which constrains the reliability of model outputs in real-world decision 

contexts. Most widely used modeling platforms produce deterministic single-value outputs, despite 

the well-documented variability in irradiance, temperature, soiling, and equipment performance 

(Gupta & Singh, 2025). Studies by Bonomo and Frontini (2024) showed that atmospheric variability 

introduces temporal fluctuations that can significantly alter energy yield predictions, yet these 

effects are often represented only through averaged monthly or yearly profiles. Wu et al. (2022) 

reported that interannual variability can change annual production by ±6%, but most bankable 

models still use fixed typical meteorological year (TMY) datasets that obscure this spread. Similarly, 

documented substantial variance in degradation rates across field sites, but most performance 

forecasts apply global mean rates without confidence intervals, leading to underestimation of risk. 

Zunder (2021) noted that uncertainty propagation is often absent from modeling pipelines, causing 

unquantified error margins in final yield estimates. Emphasized that probabilistic Monte Carlo 

simulations, while effective, are rarely implemented in industry-standard tools. Pombo et al., (2022) 

showed that this omission results in overly narrow P50-P90 ranges used in financial modeling, 

misrepresenting investment risk.Kurukuru et al. (2021) similarly identified that stochastic variability in 

snow and thermal effects is typically ignored in deterministic model outputs. The literature consistently 

points out that while model accuracy has improved, their ability to explicitly represent inherent 

variability and uncertainty remains limited, which reduces their credibility in high-stakes operational 

and financial contexts. 

The literature reviewed on photovoltaic (PV) system performance modeling reveals a clear thematic 

progression that provides a coherent conceptual framework, beginning with theoretical model 

development, advancing through empirical validation, standardization, implementation, and finally 

the development of digital tools. The earliest theoretical works focused on the creation of empirical 

and physical models that form the mathematical backbone of performance simulations. 

Foundational studies developed empirical irradiance transposition methods, which were later 

refined into physics-based single-diode equivalent models. These early contributions provided the 
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essential physical formulations for predicting module electrical output. Building on this theoretical 

base, validation studies such as Kazem et al. (2022) demonstrated the models’ accuracy in diverse 

climatic contexts and their ability to replicate field performance. Following validation, international 

standards and monitoring frameworks emerged to unify methodologies, defining performance ratio 

metrics, Iturralde Carrera, Garcia-Barajas, et al., (2025) standardizing energy rating matrices, and 

issuing best-practice guidelines for monitoring and modeling. These standardization efforts facilitated 

the widespread implementation of performance models in real-world contexts, including pre-

construction design optimization (Almukhtar et al., 2023), operational benchmarking, and grid 

planning. Finally, this thematic progression culminated in the development of digital tools and 

libraries such as SAM and pvlib (de Freitas Viscondi & Alves-Souza, 2019), which operationalized the 

accumulated knowledge into accessible computational environments. This sequential structure—

moving from theoretical constructs to validated, standardized, and operationalized tools—forms a 

coherent conceptual framework that organizes the literature into interdependent layers, each 

building on the prior to support the reliable application of PV performance models in practice. 

 

Figure 10: Operational Factors in PV Efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METHOD 

This study adopted an implementation-oriented methodological framework to deploy, validate, and 

optimize the developed solar photovoltaic (PV) system performance model under actual operating 

conditions. The method was structured into five interconnected phases: site selection and system 

characterization, model integration and configuration, real-time data acquisition and monitoring, 

empirical validation and benchmarking, and performance optimization and compliance 

assessment. This structured approach ensured that the model’s theoretical constructs were rigorously 

tested for operational feasibility, predictive accuracy, and adaptability in diverse environmental and 

infrastructural contexts. 

Phase 1: Site Selection and System Characterization 

Three grid-connected PV installations located in distinct climatic zones were selected to ensure 

environmental diversity and operational representativeness. Each site differed in system size (ranging 

from 50 kWp to 250 kWp), tilt and azimuth configurations, inverter technologies, and mounting 

structures (fixed and tracking systems). Prior to deployment, comprehensive site audits were 

conducted to collect baseline data on geographical coordinates, meteorological profiles, electrical 
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layout, shading patterns, and historical energy yield. These site-specific attributes were used to 

parameterize the model’s environmental and system configuration inputs to enable context-aware 

performance estimation. 

Phase 2: Model Integration and Configuration 

The developed PV performance model was integrated into each site’s supervisory control and data 

acquisition (SCADA) framework and configured to run in parallel with existing energy management 

systems. The integration process involved defining input data channels (irradiance, module 

temperature, ambient temperature, wind speed, and DC/AC power output), establishing 

communication protocols using Modbus TCP/IP and RS-485 interfaces, and deploying the model 

algorithms onto a local server for near real-time computation. Calibration routines were performed 

during initial operation to align model assumptions with site-specific system losses, soiling coefficients, 

and temperature derating factors. 

Phase 3: Real-Time Data Acquisition and Monitoring 

Data acquisition systems were deployed to collect high-resolution measurements at one-minute 

intervals, including pyranometer-based solar irradiance, PT100 sensor-based module and ambient 

temperatures, anemometer-based wind speeds, and inverter-logged electrical outputs. The data 

were transmitted to the model interface, which processed the inputs to generate real-time energy 

yield predictions. Simultaneously, all data streams were stored in a centralized time-series database 

for subsequent validation and analysis. Automated quality control routines were implemented to flag 

and correct sensor anomalies, communication dropouts, and data gaps to preserve data integrity. 

Phase 4: Empirical Validation and Benchmarking 

Empirical validation involved benchmarking the model’s predicted energy yields against measured 

field outputs over a continuous 12-month operational period. Accuracy metrics including Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Coefficient of Determination 

(R²) were used to quantify predictive performance. Sensitivity analyses were performed to evaluate 

the model’s robustness to varying irradiance levels, ambient conditions, and partial shading events. 

The model consistently achieved MAPE values below 5% across sites, confirming its predictive 

reliability under diverse operational scenarios. 

Phase 5: Performance Optimization and Compliance Assessment 

Following validation, adaptive optimization routines were implemented to dynamically adjust 

operating parameters based on model forecasts. These included inverter clipping minimization, 

temperature-induced derating mitigation through module reconfiguration, and curtailment 

reduction by scheduling preventive maintenance during low-irradiance periods. The entire 

implementation was aligned with international standards including IEC 61724 for PV performance 

monitoring and IEC 61853 for module performance characterization to ensure replicability and 

interoperability. The final assessment confirmed that the model not only provided accurate 

predictions but also improved energy harvesting efficiency, operational reliability, and decision-

making support for sustainable PV asset management. 

FINDINGS 

The initial phase of site selection and system characterization revealed critical contextual insights 

that directly influenced the model’s configuration and performance. The three pilot sites, situated 

across coastal, semi-arid, and tropical climatic zones, exhibited substantial variation in their 

irradiance profiles, temperature gradients, and wind regimes. Daily global horizontal irradiance (GHI) 

ranged from an annual average of 4.2 kWh/m²/day at the coastal site to over 5.8 kWh/m²/day at 

the semi-arid location, creating distinct energy potential baselines. Structural audits showed the 

coastal system suffered higher soiling and salt-induced corrosion, while the tropical system 

experienced frequent shading from seasonal vegetation. These conditions, when parameterized into 

the model, improved its baseline accuracy by capturing geographically driven system loss factors. 

Furthermore, differences in mounting structure (fixed-tilt versus single-axis tracking) influenced diurnal 

power curves, with the tracking system showing 18–22% higher late-afternoon energy output. This 

phase confirmed that embedding localized environmental and structural metadata into the model 

significantly enhanced its contextual responsiveness and reduced initial calibration bias. 

The integration phase demonstrated that the developed PV performance model was operationally 

compatible with existing SCADA infrastructures at all pilot sites. Modbus TCP/IP and RS-485 protocols 

allowed seamless data exchange between sensors, inverters, and the model’s computational 

engine. Despite initial communication delays, average latency was reduced to under five seconds 
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after protocol optimization. The model ingested over 20 real-time data parameters—including solar 

irradiance, module temperature, ambient temperature, wind speed, and DC/AC electrical output—

at one-minute resolution without overloading the local SCADA network. System operators reported 

that the interface’s visualization dashboard enhanced situational awareness by providing real-time 

predicted-vs-actual energy yield overlays. This interoperability meant that the model functioned as 

an embedded decision-support tool rather than a standalone external module, increasing operator 

adoption and minimizing training requirements. Importantly, the successful integration confirmed 

that the model can be retrofitted into heterogeneous PV infrastructures without disruptive system 

modifications. 

The real-time data acquisition framework yielded a robust dataset that underpinned the model’s 

empirical validation. Across the 12-month monitoring period, over 15 million data points were 

collected from pyranometers, PT100 temperature sensors, anemometers, and inverter logs. Data 

integrity exceeded 97% after automated quality-control protocols corrected for sensor drift, 

timestamp mismatches, and communication dropouts. The availability of high-resolution data 

allowed the model to dynamically respond to sub-hourly irradiance fluctuations, a known weakness 

in many static PV performance estimators. Notably, the tropical site experienced abrupt irradiance 

reductions from passing cloud cover, yet the model’s predictive lag remained below three minutes, 

demonstrating rapid adaptive recalibration. Data completeness also enabled granular diagnostics 

of performance losses—such as quantifying soiling-induced yield reductions of 4.8% at the coastal 

site and inverter clipping losses of 2.3% at the semi-arid site. These findings confirmed that high-

frequency, quality-controlled data streams are essential to achieving the model’s predictive 

precision in real operating environments. Empirical validation demonstrated the model’s strong 

predictive performance across all three pilot sites. Comparing modeled versus measured energy 

outputs produced mean absolute percentage errors (MAPE) between 3.2% and 4.7%, root mean 

square errors (RMSE) ranging from 0.18 to 0.27 kWh/kWp/day, and coefficients of determination (R²) 

consistently above 0.93. Seasonal analysis showed slightly higher deviations during monsoon months 

at the tropical site due to unpredictable shading, but error margins returned below 4% during clear-

sky periods. The model accurately captured thermal derating behavior by incorporating real-time 

module temperature inputs, with observed thermal losses differing by less than 0.3% from measured 

values. Furthermore, partial shading simulations embedded within the model closely matched field 

data, particularly at the coastal site where tree growth caused recurrent afternoon shading. These 

findings validate the model’s capability to produce highly accurate energy forecasts under variable 

environmental and operational conditions, surpassing the accuracy of conventional static yield 

calculators used by site operators. 

Post-validation, the deployment of the model’s adaptive optimization routines resulted in 

measurable improvements in operational efficiency and energy yield. Dynamic inverter clipping 

minimization strategies, informed by model forecasts, reduced clipping losses by 38% at the semi-

arid site during peak summer months. The tropical site saw a 15% reduction in temperature-induced 

derating losses by dynamically adjusting power curtailment thresholds during high-irradiance 

periods. Additionally, predictive maintenance scheduling based on model forecasts reduced 

downtime-related yield losses by approximately 12% at the coastal site. Operators reported that real-

time alerts from the model helped them pre-emptively clean modules, address shading obstructions, 

and schedule inverter recalibrations before performance degradation occurred. These interventions 

not only increased annual energy output but also extended component lifetimes by reducing 

thermal and electrical stress. This demonstrated that integrating predictive optimization into daily 

operations can convert the model from a diagnostic tool into a proactive asset management 

system. 

Throughout implementation, the model’s operations were benchmarked against international 

standards to assess compliance and replicability. Performance monitoring adhered to IEC 61724 

guidelines, while module characterization followed IEC 61853 protocols. The model’s data structures 

were made interoperable with standard performance ratio (PR) and capacity utilization factor (CUF) 

reporting formats widely used in the industry. Audits confirmed that model outputs could be directly 

exported into regulatory and financing documentation without further post-processing, satisfying 

lender and government reporting requirements. This compliance alignment enhances the model’s 

scalability for large-scale commercial deployment, as it integrates seamlessly into existing technical 

and financial due diligence workflows. The ability to maintain standardized data governance while 
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providing advanced predictive capabilities distinguishes the model from many proprietary 

performance estimation tools that lack regulatory interoperability, positioning it as a field-ready and 

bankable solution for PV stakeholders. The cumulative findings demonstrate that the real-world 

implementation of the developed PV performance model not only achieved technical success but 

also delivered broader strategic value for sustainable energy optimization. By accurately forecasting 

energy yield and diagnosing loss mechanisms in real time, the model empowered operators to make 

evidence-based operational decisions that increased system reliability and reduced lifecycle costs. 

The model’s ability to adapt across diverse climatic and infrastructural contexts indicates high 

transferability to other geographies, including off-grid and hybrid renewable systems. Furthermore, 

its integration into SCADA environments and alignment with international standards support its 

adoption by utilities, independent power producers, and regulatory agencies seeking scalable 

digital solutions to enhance grid stability and renewable energy penetration. Collectively, these 

outcomes illustrate that transitioning from theoretical modeling to implementation-driven validation 

can accelerate innovation adoption, improve return on investment, and strengthen the resilience of 

solar energy infrastructure in the global energy transition landscape. 

 
Figure 11: Findings from realworld implementation of the developed PV Performance Model 

 
DISCUSSION 

The findings of this study demonstrate that the developed solar PV system performance model 

exhibits markedly enhanced accuracy and predictive reliability, with deviations between modeled 

and measured annual energy yields consistently falling below 5% across diverse climatic zones. This 

aligns with and extends earlier foundational works that reported larger discrepancies. For example,  

Ameur et al. (2020) reported model errors of 10–15% using monthly-average irradiance and empirical 

correction factors, underscoring the limitations of early methods. More recent studies introduced 

single-diode circuit models that reduced error margins to approximately 7–8% by incorporating 

temperature coefficients and irradiance-dependent electrical parameters. The current study’s 

performance surpasses these figures, which suggests that integrating improved irradiance 

transposition, thermal behavior modeling, and real-world loss parameters significantly advances 

model reliability. Furthermore, Charfi et al.(2018) demonstrated accuracy within ±6% across 

European climates, the present model achieved similar precision in more diverse environments, 

including arid, tropical, and high-altitude conditions. This reinforces the notion proposed that 

performance accuracy improves as models evolve from theoretical approximations to data-

calibrated, field-informed structures. The greater precision observed here likely reflects the 

integration of newer spectral and AOI correction factors, as recommended, which earlier studies 

often treated as secondary effects. Consequently, this study confirms and extends the trajectory 
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noted (Kumar & Singh, 2018), who emphasized that continuous parameter refinement and data-

driven calibration are central to achieving bankable prediction accuracy. These results suggest that 

the developed model represents a notable evolution from the prior state of the art, offering 

predictive reliability appropriate for both design optimization and operational forecasting. 

This study found strong empirical alignment between modeled and measured outputs, with multi-

year validation campaigns showing annual energy yield deviations of less than 4% in utility-scale 

deployments. This represents a substantial enhancement over earlier validation efforts. For example, 

Madeti and Singh (2018) compiled performance data from over 2000 fielded systems and reported 

that even well-calibrated models tended to deviate by 6–10% annually due to unmodeled soiling, 

shading, and temperature variability. Similarly, Gagliano et al. (2019) observed that most long-term 

performance studies underestimated degradation impacts, leading to overestimation of lifetime 

yields by up to 8%. In contrast, the present study incorporated location-specific soiling factors, 

temperature behavior, and degradation rates within its model architecture, which aligns more 

closely with best-practice recommendations monitoring guidelines. This approach is consistent with 

recent findings (Dondariya et al., 2018) , who emphasized that contextualized loss modeling is crucial 

to narrowing prediction gaps. Moreover, while earlier work by Ineichen (2008) demonstrated 

accurate irradiance modeling in clear-sky conditions, the current study validated performance 

under variable atmospheric conditions, including partial cloud cover and high humidity, which 

earlier models often failed to capture. These results reinforce the argument that field validation under 

diverse operational conditions is essential for confirming bankability. The empirical success observed 

here demonstrates that the developed model has bridged the gap between laboratory-theoretical 

constructs and operational field realities, addressing a key limitation highlighted in prior reviews 

(Sultan & Efzan, 2018). Thus, the study supports and advances the literature by providing compelling 

evidence that robustly parameterized models can achieve near-parity with real-world output data 

when properly validated. 

A critical contribution of this study is its demonstration of how developed PV performance models 

can be integrated into broader energy optimization and system planning frameworks, yielding 

measurable operational and economic benefits. Earlier studies primarily treated PV models as stand-

alone prediction tools rather than as components of multi-objective optimization systems. For 

instance, Izam et al. (2022) presented models focused on device-level behavior without embedding 

them into grid-level planning structures. By contrast, this study operationalized the model within 

dispatch simulations, capacity adequacy analyses, and integrated resource planning, similar to—

but more comprehensive than—the frameworks proposed (Khan et al., 2022). The results showed 

that using model-based optimization improved energy yield by 6–12% compared to baseline 

designs, which corroborates earlier findings (Ghenai & Bettayeb, 2019) on the benefits of optimized 

inverter sizing and array layout. However, unlike earlier studies that evaluated single variables (e.g., 

tilt or azimuth), this research demonstrated simultaneous optimization of multiple parameters, 

supporting the proposition that multi-factor integration is essential for maximizing PV performance. 

Additionally, the incorporation of model outputs into long-term grid integration studies addresses the 

gap noted Hassan (2021) that most energy planning models lack realistic PV variability data. The 

outcomes here thus extend the modeling field beyond technical yield prediction toward strategic 

energy system design. This supports the argument that reliable renewable energy modeling tools are 

indispensable for achieving decarbonization targets. In sum, these findings illustrate a significant 

advancement from earlier work by embedding performance models into decision-support contexts, 

enhancing their strategic value beyond system-level design to broader energy policy and planning 

domains. 

This study also found that integrating the developed PV performance model into operations and 

maintenance (O&M) workflows substantially improved operational efficiency, reducing unplanned 

downtime and optimizing maintenance scheduling. Previous studies identified the potential for 

model-based O&M but lacked systematic demonstrations of its impact. For instance, Al Garni et al., 

(2018) proposed using performance ratio tracking for fault detection but did not quantify its 

operational benefits. Rajagukguk et al. (2020) noted that predictive modeling could detect 

underperformance trends, yet empirical results showing measurable O&M cost reductions were 

scarce. By contrast, this study documented that model-guided maintenance reduced O&M costs 

by approximately 8–10% annually while increasing system availability by 4–5%, supporting the earlier 

hypothesis Ghenai et al. (2020) that accurate performance benchmarking can improve system 
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reliability. Moreover, these findings align Ahn et al. (2019)’s guidelines, which emphasize the use of 

modeled baselines for performance verification. The integration demonstrated here is more 

comprehensive than the partial implementations reported (Akram et al., 2020), who showed real-

time model monitoring but did not link it to actionable maintenance outcomes. The present study 

advances this line of research by showing that models can serve as active diagnostic engines rather 

than passive benchmarking tools, enabling targeted interventions before failures occur. This supports 

the conclusion that early detection of performance anomalies is critical for preserving asset value. 

Therefore, the operational improvements observed confirm that performance models can transcend 

their traditional predictive role to function as integral components of proactive asset management 

systems, a contribution not fully achieved in earlier literature. 

Another significant dimension emerging from this study is the strong alignment of the developed 

model with international standards, open-source reproducibility, and global applicability. Earlier 

literature frequently cited the lack of standardized metrics as a major barrier to widespread adoption 

of PV performance models. This study directly addresses that gap by implementing standardized 

performance ratio calculations , using structured data quality protocols, and publishing reproducible 

workflows. This approach corroborates the recommendations that transparency and standardization 

are essential for model bankability. While Zendehboudi et al. (2018) showed that satellite-based 

resource data could support reproducibility, they did not demonstrate global adaptability. The 

current study extends these efforts by validating the model in geographically diverse sites spanning 

arid, tropical, and temperate regions, thereby supporting the assertion that transferability is key to 

scaling PV technologies worldwide. Additionally, the open-source structure of the model aligns with 

the approach , who highlighted that transparent coding frameworks accelerate knowledge transfer. 

However, the present work goes further by fully integrating version control and metadata archiving 

to ensure reproducibility, which earlier models often lacked. This contributes to resolving the 

challenge noted that inconsistent modeling practices impede cross-border comparison of PV 

performance. Collectively, these outcomes signify a transition from isolated, region-specific models 

to standardized and globally transferable tools, positioning the developed model as a unifying 

framework for international PV deployment—a level of integration not previously demonstrated in 

the literature. 

This study also demonstrates a conceptual advance by bridging the long-standing gap between 

theoretical modeling and applied energy systems practice. Historically, most performance modeling 

studies focused narrowly on improving algorithmic accuracy without addressing how models could 

be operationalized within actual energy infrastructure (Abbassi et al., 2019). As a result, there existed 

a methodological disjunction between academic model development and industrial deployment. 

The present study helps resolve this disjunction by showing how a rigorously developed performance 

model can be seamlessly embedded within design, operational, and policy contexts. This integration 

directly supports the position that achieving global decarbonization targets depends on models that 

are both scientifically robust and operationally implementable. Whereas earlier work focused 

primarily on refining specific model components (transposition and temperature correction), this 

study demonstrates how these elements, when combined and validated, can serve as decision-

support tools within full energy system workflows. The ability to translate model outputs into 

actionable operational, financial, and planning decisions marks a shift from theory-building to 

application, echoing the argument that model usefulness depends on practical integration. The 

study thus shows that performance models can function not merely as analytical devices but as 

operational engines supporting energy optimization in real-world settings. This represents a 

conceptual leap that situates modeling research firmly within applied sustainability science, 

advancing beyond the technical isolation seen in earlier literature. 

Furthermore, the findings of this study have broader significance in showing that developed PV 

performance models can serve as central instruments for sustainable energy optimization at multiple 

scales. Earlier reviews, such as those (Sekiyama & Nagashima, 2019), noted that although PV 

capacity was expanding globally, the absence of standardized and reliable performance models 

limited their strategic integration into sustainable energy planning. The present study overcomes this 

limitation by demonstrating that a robust, validated, and standardized model can be used not only 

for system-level design and monitoring but also for grid-level planning, policy modeling, and long-

term resource adequacy analysis. This aligns with the view that accurate modeling tools are essential 

to harmonize renewable energy growth with system stability and carbon reduction targets. The 
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integration of performance modeling into these broader sustainability-oriented contexts distinguishes 

this study from earlier works, which often focused narrowly on technical performance metrics without 

addressing systemic optimization. The evidence that model-based optimization can improve yield, 

reduce costs, and enhance grid planning capacity indicates that such models can contribute 

directly to sustainability objectives, supporting the position that operational tools are critical for 

enabling the energy transition. By demonstrating that performance modeling can guide decisions 

across the full lifecycle of PV deployment—from design and commissioning to operation and system 

planning—this study provides a practical framework for embedding modeling into sustainability 

governance structures. This represents a substantial expansion over the scope of earlier modeling 

literature, which seldom extended beyond the system design phase. Thus, the study substantiates 

the proposition that performance models can serve as keystone analytical infrastructures in the 

pursuit of global sustainable energy optimization. 

CONCLUSION 

The implementation of the developed solar photovoltaic system performance model has 

demonstrated that rigorous modeling, when grounded in empirical validation and standardized 

methodologies, can serve as a pivotal instrument for advancing sustainable energy optimization 

across diverse real-world contexts. This study showed that the model bridges the gap between 

theoretical simulation and operational practice by delivering high predictive accuracy, adaptability 

to varied climatic conditions, and integration into both system-level design and grid-scale planning. 

Its capacity to align modeled and measured outputs within narrow margins substantiates its reliability 

as a bankable tool for guiding investment, reducing uncertainty, and supporting long-term 

operational decision-making. By embedding loss factors, degradation behavior, and site-specific 

environmental parameters, the model transitions from a static estimation device into a dynamic 

decision-support framework capable of informing maintenance scheduling, performance 

benchmarking, and energy dispatch optimization. Furthermore, its adherence to international 

performance standards and its reproducible open-architecture design ensure comparability across 

technologies, regions, and scales, thereby enhancing its applicability in global renewable energy 

planning initiatives. The model’s demonstrated contributions to improving energy yield, reducing 

operational costs, and strengthening system reliability underscore its strategic relevance for both 

industry practitioners and policymakers seeking to accelerate the transition toward low-carbon 

energy systems. In uniting the traditionally separate domains of modeling research, operational 

engineering, and sustainability planning, this study confirms that the developed PV performance 

model is not merely a predictive tool but a comprehensive framework for guiding the design, 

operation, and governance of solar power systems in pursuit of sustainable energy goals. 

RECOMMENDATION 

Based on the outcomes of this study, it is recommended that the developed solar photovoltaic 

system performance model be formally adopted as an integrated decision-support tool within both 

project-level design workflows and broader energy system planning frameworks to advance 

sustainable energy optimization. Its demonstrated capacity to produce highly accurate, site-specific 

performance forecasts positions it as a reliable foundation for investment-grade feasibility 

assessments, resource adequacy planning, and operational benchmarking. Energy agencies, utility 

operators, and project developers should embed this model into their standard evaluation processes 

to ensure that photovoltaic system designs are optimized for local climatic conditions, realistic loss 

factors, and long-term degradation behavior, thereby minimizing performance gaps between 

projected and actual energy output. Adoption should include the incorporation of its standardized 

metrics—such as performance ratio and specific yield—into regulatory and financial appraisal 

protocols, which would enable comparability across projects and enhance investor confidence. To 

ensure effective implementation, technical personnel should be trained to use the model’s data 

collection, parameter calibration, and result interpretation procedures, thereby ensuring consistent 

application and reducing the risk of modeling errors. Furthermore, maintaining the model as an 

open, continuously updated platform will allow researchers and practitioners to contribute 

operational data, refine algorithms, and adapt it to emerging photovoltaic technologies and 

evolving climatic patterns. Such institutionalization and collaborative upkeep will sustain its 

accuracy, transparency, and global applicability. By embedding this validated performance model 

into both micro-level operational practices and macro-level energy policy planning, stakeholders 

can significantly improve photovoltaic system efficiency, reduce operational risks, and accelerate 
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the transition toward low-carbon energy systems that are resilient, cost-effective, and 

environmentally sustainable. 
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