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ABSTRACT 

This study investigates the deployment of artificial intelligence (AI)–supported 

structural health monitoring (SHM) systems for in-service bridges using Internet of Things 

(IoT) sensor networks, a rapidly advancing domain that merges cutting-edge sensing, 

communication, and data analytics to improve infrastructure safety and durability. 

Traditional bridge inspections and early wired SHM systems have faced persistent 

limitations, including manual data interpretation, latency in damage detection, and 

scalability barriers due to cost and complexity. Recent breakthroughs in wireless IoT 

technologies, multi-modal sensor fusion, and AI-based analytics now offer the 

potential for continuous, automated, and highly reliable monitoring of structural 

integrity across diverse bridge typologies and environmental conditions. To critically 

synthesize the state of knowledge, this systematic review analyzed 146 peer-reviewed 

papers published between 2000 and 2022 spanning civil engineering, computer 

science, and information systems. The review explored key dimensions: (a) the 

historical evolution and objectives of SHM in bridge engineering; (b) IoT sensor 

modalities and network architectures enabling large-scale monitoring; (c) AI 

techniques for damage classification, anomaly detection, and signal feature 

engineering; (d) system reliability and data integrity strategies including calibration, 

drift compensation, and cybersecurity; (e) deployment challenges and scalability 

considerations across steel and concrete bridges; (f) comparative field case studies 

and lessons from global smart infrastructure programs; and (g) emerging research 

directions such as digital twins, blockchain data provenance, climate-resilient AI, and 

hybrid human–AI decision systems. The findings indicate that AI-enhanced SHM 

significantly improves predictive damage detection, reduces false alarms, and 

supports timely maintenance decisions, especially when combined with multi-sensor 

IoT networks and robust data governance. However, challenges remain in 

standardization, model retraining under concept drift, cost–benefit justification for 

large-scale deployment, and regulatory acceptance of AI-informed safety decisions. 

The review also highlights knowledge gaps around extreme climate resilience, secure 

and scalable data management, and human oversight frameworks for trustworthy AI. 

By consolidating insights across 146 studies, this work provides an integrated roadmap 

for researchers, engineers, and policymakers aiming to advance the next generation 

of smart, resilient, and cost-effective bridge monitoring systems. 
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INTRODUCTION 

Structural Health Monitoring (SHM) refers to the continuous or periodic observation of a structure’s 

condition through sensor-based measurements, data processing, and diagnostic/prognostic 

inference to assess performance, detect anomalies, and quantify deterioration states (Zinno et al., 

2018). In-service bridges—critical assets in national and transnational transportation systems—face 

cumulative damage from traffic loading, environmental exposure, aging, and extreme events that 

can compromise safety and serviceability.  Internet of Things (IoT) sensor networks extend SHM by 

enabling distributed measurement, synchronized acquisition, and IP-enabled data flows across 

heterogeneous sensing modalities such as accelerometers, strain gauges, displacement 

transducers, GNSS, fiber Bragg grating (FBG), acoustic emission, and corrosion sensors. Artificial 

Intelligence (AI)—including machine learning and deep learning—supplies automated pattern 

recognition, state estimation, and decision support that transform raw telemetry into quantitative 

indicators of damage, capacity, and reliability. Within this paper, “quantitative deployment” 

denotes the end-to-end instantiation of SHM workflows—from sensor layout and sampling design to 

modeling pipelines, threshold setting, and validation metrics—implemented on operational bridges 

with explicit measurement, statistical, and algorithmic specifications (Giurgiutiu, 2020). The 

international significance of such deployments is anchored in global infrastructure interdependence 

and in harmonization efforts reflected across standards and guidance from organizations and 

agencies managing bridge safety, risk, and performance objectives. Building on these definitions, 

an integrated view of IoT-enabled, AI-supported SHM highlights the combined roles of networked 

sensing, edge/cloud computation, and data-driven diagnostics in safeguarding mobility, trade, and 

public welfare across jurisdictions (Kaya & Safak, 2015). 

 

Figure 1: IoT-Enabled Bridge Health Monitoring 

 

Quantitative SHM begins with measurement science: defining measurands (strain, acceleration, 

temperature, displacement), selecting sensors and sampling rates, and establishing calibration, 

synchronization, and time-stamping protocols that protect the statistical validity of downstream 

inference. For bridges, modal parameters (natural frequencies, damping ratios, mode shapes) 

extracted from ambient vibration or traffic-induced responses serve as sensitive indicators of stiffness 

changes associated with damage or deterioration (Mahmud et al., 2018). Strain-based indicators 

capture local demand in decks, girders, and bearings; temperature compensation and 

environmental normalization reduce confounding in long-term trends. IoT architectures link edge 

devices and gateways that manage buffering, compression, and on-device analytics with message 

protocols and streaming backbones suitable for bandwidth and power constraints. Synchronized 

timing—via PTP or GNSS—enables multi-sensor fusion and operational modal analysis under ambient 

conditions (Dutta et al., 2021). Quantitatively, deployment requires sampling designs that balance 
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aliasing risk, duty cycles, and event-capture probabilities; power budgeting that aligns with solar or 

energy-harvesting profiles; and data assurance plans that include periodic calibration and drift 

checks. These design choices anchor inferential integrity for damage detection, localization, and 

quantification tasks, setting the stage for statistical modeling and AI pipelines that use the resulting 

measurements for reliable, replicable assessments of in-service behavior (Danish & Zafor, 2022; 

Lehmhus & Busse, 2018). 

AI-supported diagnostics build on feature engineering and representation learning to discriminate 

normal and abnormal states, estimate damage indices, and assign probabilities to competing 

hypotheses about structural condition. Classical machine learning—support vector machines, 

random forests, and Gaussian process classifiers—leverages features such as frequency shifts, mode 

shape curvatures, strain ratios, and time–frequency descriptors. Deep learning offers convolutional 

and recurrent architectures for automated feature learning from raw or minimally processed time 

series, spectrograms, and wavelets, enabling robust classification and regression under variable 

operational conditions (Danish & Kamrul, 2022; Gharehbaghi et al., 2022). Unsupervised and semi-

supervised methods—autoencoders, isolation forests, variational approaches—address scarcity of 

labeled damage data characteristic of healthy bridges by learning compact normality models and 

flagging deviations. Domain adaptation and transfer learning mitigate distribution shifts due to 

seasonal temperature cycles, traffic evolution, or sensor replacements. Probabilistic frameworks 

couple physics-informed priors with data-driven likelihoods to yield Bayesian estimates of damage 

states and residual capacity, supporting uncertainty-aware diagnostics (Forrest et al., 2017; Jahid, 

2022a). The quantitative deployment perspective emphasizes explicit model specifications, 

hyperparameter tuning protocols, cross-validation schemes, and performance reporting consistent 

with reproducible SHM inference under real operating conditions. 

 

Figure 2: Edge–Cloud Quantitative Deployment Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The international bridge context motivates deployment at network scale. Urban freight corridors, 

intercity rail viaducts, and cross-border highway bridges concentrate economic activity and human 

mobility, magnifying the value of continuous condition information. Long-span cable-stayed and 

suspension bridges exemplify complex, spatially distributed systems where multi-tier sensing and 

hierarchical analytics support both global and local assessments (Siahkouhi et al., 2021). Case 

literature documents deployments on steel box-girder and concrete segmental bridges that 

integrate ambient vibration monitoring with strain and temperature arrays, offering longitudinal 

baselines from which to quantify aging and environmental effects. Investigations following high-

profile failures illustrate how changes in modal properties, joint rotations, or unusual strain patterns 

can signal evolving conditions under ordinary traffic loads (Pallarés et al., 2021). Internationally, 

harmonization with performance-based design philosophies and asset management frameworks 

enables SHM outputs to be embedded as quantitative evidence within inspection cycles, load rating 
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updates, and rehabilitation prioritization. The confluence of IoT connectivity, AI-driven inference, and 

asset management processes supports consistent, cross-jurisdictional interpretation of condition 

indicators, creating shared baselines of meaning that can be compared across climates, materials, 

and traffic regimes. In this setting, deployment parameters—sensor density, gateway placement, 

telemetry cadence, and model retraining intervals—are treated as measurable design variables 

rather than ad hoc choices (Bao et al., 2019; Jahid, 2022b). 

Edge–cloud computation strategies are central to quantitative deployment where data volumes 

and latency requirements are nontrivial. Edge analytics, including event-triggered recording, 

compressive sensing, and on-device modal estimation, reduce bandwidth and accelerate response 

for threshold-based alerts. Cloud pipelines orchestrate streaming ingestion, distributed storage, and 

scalable AI training, while governance layers enforce data lineage, versioning, and access control 

(Arifur & Noor, 2022; Scuro et al., 2021). Time-synchronization integrity and lossless or tolerable-loss 

compression are quantified and reported to underpin downstream inference. Digital twin 

formulations provide a quantitative bridge between sensed states and structural models through 

model-updating and state estimation that incorporate measurement noise and modeling errors. 

Multi-sensor fusion—combining accelerations, strains, and temperatures—supports robust estimation 

of modal parameters and damage indices under environmental variability, documented in 

algorithmic studies that balance sensitivity and specificity. Lifecycle data management plans specify 

retention windows, resampling rules, and archival policies so that long-term trend analyses and re-

analyses remain feasible and statistically coherent (Cremona & Santos, 2018; Hasan et al., 2022). 

These architecture choices translate directly into quantitative performance characteristics—latency 

distributions, packet loss rates, and effective sample sizes—that shape the reliability of AI-supported 

diagnostics and the interpretability of network-wide indicators. 

Validation and verification (V&V) provide the quantitative foundation for credible SHM outputs in 

service. Closed-form benchmarks and finite element models enable synthetic trials with controlled 

damage scenarios to check identifiability and calibration of AI models. Laboratory-scale 

specimens—beams, trusses, and scaled bridge segments—supply ground truth through instrumented 

damage, facilitating supervised learning and error decomposition. Field validation leverages 

controlled load tests, weigh-in-motion integration, and known intervention events (bearing 

replacement, deck overlay) to quantify sensitivity, false alarm rates, and receiver operating 

characteristics (ROC). Environmental and operational variability are handled through baseline 

modeling, temperature–frequency regression, and cointegration techniques that stabilize damage-

sensitive features (Redwanul & Zafor, 2022; Tokognon et al., 2017). Uncertainty quantification—

propagating sensor noise, missing data, and model uncertainty—yields credible intervals for 

damage metrics and probabilities of exceedance tied to accept–reject thresholds. Documentation 

of V&V protocols, including cross-site replication and inter-laboratory comparability, advances the 

portability of SHM methods across different bridge typologies and climates. These practices integrate 

with asset management decision processes by expressing diagnostic outputs as quantitative 

evidence suitable for codified acceptance within inspection and maintenance schedules (Rezaul 

& Mesbaul, 2022; Nasr et al., 2020). 

Finally, deployment governance aligns technical systems with organizational accountability and 

public reporting. Roles and responsibilities for data owners, analysts, and maintenance personnel are 

articulated alongside procedures for configuration management, firmware updates, and 

cybersecurity safeguards that protect sensor networks and cloud platforms. Incident documentation 

frameworks archive time-stamped alerts, analyst adjudications, and remedial actions, producing 

auditable trails of model behavior and human decisions. Quantitative performance dashboards 

display key indicators—data completeness, uptime, model accuracy, and stability of environmental 

normalization—at asset and network levels to support transparent oversight (Hasan, 2022; Nasr et al., 

2021). Training and competency records for field technicians and data analysts accompany 

standard operating procedures for sensor installation, calibration, and safe access, anchoring the 

human factors dimension of reliable SHM. In this framing, AI-supported IoT SHM for in-service bridges 

is organized as a measurable, documented, and verifiable system whose outputs are expressed with 

quantified uncertainty and explicit validation histories, enabling consistent interpretation across 

organizations and jurisdictions (Bessembinder et al., 2019). The introduction thus delineates a 

quantitative deployment perspective that integrates definitions, measurement design, AI inference, 
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architecture, validation, and governance elements necessary to operationalize SHM on working 

bridges with international relevance. 

The present study aimed to evaluate the effectiveness of AI-enhanced structural health monitoring 

(SHM) systems compared to conventional IoT-only deployments by examining differences in Bridge 

Health Index (BHI) scores across a diverse set of in-service bridges. It sought to quantify the predictive 

influence of key system performance metrics—including sensor accuracy, AI detection precision, 

and data transmission latency—on overall structural condition outcomes. In addition, the study 

aimed to explore whether bridge typology, such as steel, concrete, or composite construction, 

moderates the benefits of AI-driven monitoring, providing insight into context-specific performance. 

Another important goal was to validate the quality and reliability of AI-integrated SHM data 

pipelines, ensuring accurate sensing, stable latency, and internal consistency of the BHI as a 

composite indicator. Ultimately, the study sought to generate evidence-based guidance for 

infrastructure managers and policymakers by identifying the technical levers most strongly 

associated with improved monitoring reliability and bridge condition assessment, thereby informing 

best practices for future AI–IoT SHM deployments. 

LITERATURE REVIEW 

Structural health monitoring (SHM) has evolved as a core discipline in modern civil infrastructure 

management, aiming to provide continuous, objective, and data-driven insights into the safety and 

performance of bridges throughout their service life. The integration of Internet of Things (IoT) sensor 

networks with Artificial Intelligence (AI) analytics represents a major shift from periodic, inspector-

driven assessments toward real-time, predictive, and automated monitoring frameworks. Traditional 

SHM systems, while effective in capturing basic vibration or strain data, often struggle with large-

scale deployment due to issues such as sensor drift, environmental noise, delayed data transmission, 

and the difficulty of extracting actionable indicators from complex multi-sensor streams (Natanian 

et al., 2019). AI-driven models, including deep learning and advanced signal processing, offer 

promising solutions to these challenges by enabling automated feature extraction, anomaly 

detection, and decision support, thus enhancing reliability and reducing manual intervention. 

Simultaneously, IoT platforms facilitate the dense and distributed acquisition of high-frequency data, 

allowing coverage of wide bridge networks while enabling scalable cloud or edge computing 

pipelines (Tarek, 2022; Natanian et al., 2020). Despite growing research and field deployments, the 

body of literature remains fragmented, with individual studies focusing on sensor technologies, data 

transmission protocols, AI-based damage detection, or reliability metrics in isolation. To support a 

coherent understanding and inform best practices, it is necessary to synthesize findings across 

sensing technologies, data management architectures, AI-driven analytics, reliability and validation 

protocols, and system-level deployment frameworks. The following literature review organizes the 

field into structured thematic subsections, providing a systematic, multi-angle view of the state-of-

the-art, challenges, and technical enablers for AI-supported SHM in in-service bridges. 

Structural Health Monitoring in Bridge Engineering 

Structural health monitoring (SHM) emerged as a response to the limitations of purely visual and 

manual bridge inspections, which dominated infrastructure assessment throughout much of the 20th 

century. Early practice depended heavily on periodic, inspector-led evaluations to detect visible 

deterioration, but these methods were subjective, labor-intensive, and prone to variability between 

inspectors (Bartesaghi-Koc et al., 2019; Kamrul & Tarek, 2022). Several catastrophic bridge failures, 

such as the Silver Bridge collapse in 1967, underscored the inadequacy of reactive, inspection-only 

paradigms and accelerated interest in continuous monitoring technologies. The 1980s and 1990s 

marked a turning point with the integration of fundamental vibration-based methods, where modal 

frequency shifts and damping changes were studied as early indicators of stiffness loss and fatigue. 

Researchers developed finite element–based damage detection frameworks that combined 

measured response data with numerical predictions (Geels et al., 2016; Kamrul & Omar, 2022), setting 

the stage for quantitative assessment rather than subjective rating. These advances aligned with 

broader trends in structural engineering toward system identification and life-cycle performance 

evaluation. By the late 1990s, prototype SHM systems employing wired accelerometers and strain 

gauges were installed on landmark bridges, including the Tsing Ma Bridge in Hong Kong and the 

Humber Bridge in the UK, offering the first real-world proof that continuous, automated data streams 

could support proactive maintenance. However, these early efforts revealed challenges in 
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managing large datasets, interpreting raw signals, and maintaining extensive wired sensor arrays in 

harsh environmental conditions (Shen et al., 2017). 

 

Figure 3: IoT- Enabled Bridege Health Monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conceptual foundation of SHM centers on three interrelated objectives: ensuring structural 

safety, extending service life, and mitigating operational and financial risk. Safety remains 

paramount because bridge failure can result in loss of life and severe socio-economic disruption; 

thus, SHM aims to detect damage at an incipient stage before catastrophic progression (Shen et al., 

2017). By providing near-continuous data on key performance indicators such as modal frequencies, 

strain levels, and temperature gradients, SHM offers asset managers an evidence-based approach 

to decide when intervention is necessary. Another critical objective is life-cycle cost optimization. 

Bridges are long-lived assets, and deterioration processes such as corrosion, fatigue cracking, and 

concrete shrinkage progress slowly but relentlessly. Real-time condition feedback allows targeted 

maintenance and timely strengthening, thus deferring expensive replacements and optimizing life-

cycle investment (Mubashir & Abdul, 2022; Visscher et al., 2020). Risk mitigation extends beyond 

physical failure to include minimizing traffic disruptions, ensuring network reliability, and supporting 

emergency response during extreme events such as earthquakes or floods. Furthermore, SHM 

supports regulatory compliance and documentation of safety assurance, which is increasingly 

important in the context of aging bridge stock and constrained public funding. Importantly, SHM also 

contributes to resilience: continuous condition data allows asset owners to adapt inspection 

frequency, allocate resources dynamically, and respond faster to emerging hazards. This 

conceptual clarity—safety, service-life extension, and risk mitigation—has guided decades of 

research and provided the rationale for continued technological advancement. 

Despite major advances, conventional SHM systems historically faced critical technical and 

operational limitations that constrained their impact. Traditional wired sensor networks were 

expensive to install and maintain, especially on long-span bridges where kilometers of cabling were 

required and vulnerable to environmental degradation (Ciulla et al., 2016; Muhammad & Kamrul, 

2022). Power supply and data acquisition hardware often lacked robustness in harsh outdoor 

conditions, limiting long-term operation. Even when high-quality data were captured, interpretation 

was challenging: raw vibration and strain signals were susceptible to environmental variability such 

as temperature, humidity, and traffic-induced noise, which could mask or mimic damage signatures. 

Many early systems lacked standardized data formats, complicating integration across platforms 

and limiting scalability beyond individual structures . Moreover, manual post-processing and reliance 

on expert interpretation created delays and introduced subjectivity back into what was meant to 

be an objective system (Li & Ou, 2016). Latency in information flow was also a recurring problem, as 

legacy systems often required batch uploads or on-site downloads, making real-time decision 
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support elusive. These barriers collectively hindered widespread adoption despite clear conceptual 

benefits. Cost and complexity remained prohibitive, especially for small to medium-sized bridges not 

deemed “strategic” enough for high-end instrumentation. Recognition of these deficiencies spurred 

interest in wireless communication, low-power sensing, and embedded analytics to simplify 

deployments and improve data timeliness and interpretability (Peckens et al., 2022; Reduanul & 

Shoeb, 2022). 

The emergence of IoT paradigms in the early 2010s represented a decisive step toward overcoming 

many legacy SHM limitations. Advances in wireless communication protocols such as ZigBee, LoRa, 

and 5G, alongside low-power microelectromechanical systems (MEMS) sensors, enabled dense yet 

cost-effective networks with easier installation and reduced maintenance burdens (Bado & Casas, 

2021). Edge computing devices began supporting on-site signal conditioning and event detection, 

reducing data transmission requirements and enabling near real-time alerts. Simultaneously, cloud 

platforms provided scalable storage and computational resources for long-term historical analysis 

and pattern recognition. Yet the biggest conceptual leap came with the integration of AI-driven 

analytics, including deep learning, unsupervised anomaly detection, and advanced signal 

processing methods. These tools automated feature extraction from high-dimensional sensor data, 

overcoming manual interpretation bottlenecks and improving sensitivity to subtle structural changes 

(An et al., 2019; Noor & Momena, 2022). Vision-based approaches combined with machine learning 

allowed robust displacement measurement through sub-pixel tracking and illumination 

compensation, while hybrid GNSS and optical pipelines enhanced metric accuracy. Early field 

applications demonstrated that AI could reduce false positives caused by environmental noise and 

enhance actionable insight for maintenance planning. Nevertheless, the transition is ongoing: 

despite proven technical potential, AI integration brings new challenges such as model drift, data 

labeling demands, and interpretability concerns. Yet this evolution—from manual inspections to 

wired SHM, IoT-based wireless networks, and finally AI-empowered monitoring—represents a 

paradigm shift, laying the foundation for the next generation of intelligent, scalable, and cost-

efficient bridge asset management systems (Chakraborty et al., 2019). 

IoT Sensor Networks for Bridge SHM 

The success of modern Internet of Things (IoT)–enabled structural health monitoring (SHM) for bridges 

is anchored in the diversity and sophistication of sensing modalities deployed across different 

structural components. Traditional accelerometers remain foundational because of their ability to 

capture global vibration signatures, mode shapes, and dynamic responses under traffic and wind 

loads.  

 

Figure 4: IoT Sensing Modalities for SHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain gauges, long used for local damage detection, have evolved into highly sensitive 

microelectromechanical systems (MEMS) devices capable of detecting minute strain variations 
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associated with fatigue and crack initiation (Molina et al., 2020). Displacement sensors, including 

laser and optical triangulation devices, provide valuable deflection and settlement data, though 

they require careful alignment and environmental shielding. More recently, global navigation 

satellite system (GNSS) receivers have been integrated to measure long-span bridge displacements 

and dynamic movements with centimeter-level accuracy, especially when combined with 

advanced signal processing to mitigate multipath and atmospheric effects. Fiber Bragg grating 

(FBG) sensors represent another transformative advance, offering multiplexed, distributed strain and 

temperature measurements over long distances with immunity to electromagnetic interference and 

high durability (Ali et al., 2018). These diverse modalities complement each other: accelerometers 

and GNSS support global modal analysis, while strain and FBG networks capture localized 

deterioration. Integrating such heterogeneous data within an IoT framework enables both broad 

and fine-grained insight, establishing the foundation for predictive, data-driven bridge 

management. 

How sensors are interconnected and how data traverse the network significantly influence system 

scalability, reliability, and maintenance costs. Star topologies, in which each sensor node transmits 

directly to a central hub, remain popular for small to medium deployments due to simplicity and low 

configuration overhead (Sofi et al., 2022). However, their single-point-of-failure vulnerability and 

limited range make them less suitable for long-span or multi-segment bridges. Mesh networks, by 

contrast, allow each node to forward data from others, increasing resilience and extending 

coverage; if one node fails, data can reroute through alternate paths. Hybrid approaches 

combining star and mesh principles have gained traction in large infrastructures because they 

balance simplicity and robustness—key gateways handle heavy traffic while peripheral nodes self-

organize for redundancy. Such architectures are vital in harsh outdoor environments where physical 

access is challenging and network reconfiguration must occur autonomously. Network design also 

must consider time synchronization, crucial for dynamic measurements like vibration and 

displacement, where millisecond misalignment can distort modal analysis. Advances in time-sensitive 

networking and precision time protocols have enhanced mesh reliability, helping maintain coherent 

data streams across hundreds of nodes. This level of architectural refinement supports the scalability 

of IoT SHM systems from single bridges to corridor-wide monitoring networks (Abdelgawad & 

Yelamarthi, 2017). 

The expansion of IoT SHM has paralleled breakthroughs in wireless communication technologies that 

support efficient, low-latency, and energy-aware data transfer. Low-power wide-area networks 

(LPWAN) such as LoRa and Sigfox have enabled cost-effective long-range monitoring where cellular 

coverage is limited, though bandwidth constraints make them better suited for low-frequency strain 

or temperature measurements (Abdelgawad & Yelamarthi, 2016). ZigBee and Wi-Fi networks provide 

higher throughput and moderate range, enabling multi-rate vibration monitoring but at the expense 

of greater power draw. The introduction of 5G networks is a game-changer for real-time SHM, 

promising ultra-low latency, high reliability, and massive device connectivity ideal for dense sensor 

deployments. However, reliable integration with structural monitoring requires careful cybersecurity 

and cost considerations. Complementing transmission advances, edge computing has reduced raw 

data volume by performing initial filtering, anomaly detection, and compression directly at the sensor 

or gateway (Alovisi et al., 2021). This approach mitigates latency, improves scalability, and enables 

near real-time alarms. Meanwhile, cloud platforms offer elastic storage and high-performance 

analytics for long-term pattern recognition, machine learning model hosting, and cross-asset 

benchmarking. The interplay between edge and cloud computing forms a powerful architecture: 

the edge handles immediate decision-making and bandwidth optimization, while the cloud supports 

historical data mining and predictive modeling. 

A persistent challenge in IoT-based SHM is powering distributed sensor nodes over long periods with 

minimal maintenance. Traditional battery-powered sensors require frequent replacement, which is 

costly and impractical for inaccessible bridge sections (Scianna et al., 2022). Advances in energy 

harvesting technologies, such as solar, wind, vibration-based, and thermoelectric systems, have 

become crucial to sustaining continuous monitoring. For example, vibration energy harvesters exploit 

ambient traffic-induced oscillations to recharge sensors, while photovoltaic modules supply power 

in open bridge environments. Ultra-low-power electronics and sleep-mode algorithms further extend 

operational life by reducing energy draw during inactivity. Research also highlights the value of 

hybrid energy strategies that combine multiple harvesting methods to cope with variable 
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environmental conditions (Harshitha et al., 2021). Reliable power directly impacts data integrity and 

model performance: sensors with intermittent energy supply cause data gaps and compromise AI 

training and anomaly detection. Therefore, long-term SHM success depends not only on advanced 

analytics and communications but equally on sustainable, self-sufficient power solutions that 

minimize manual intervention and lower lifecycle costs. 

AI Techniques in Structural Health Monitoring 

The application of supervised machine learning in structural health monitoring (SHM) has been 

transformative, providing data-driven frameworks for classifying structural states and predicting 

potential damage. Traditional methods relied on threshold-based or regression techniques to 

interpret vibration and strain signals, but supervised algorithms such as support vector machines 

(SVM), random forests (RF), convolutional neural networks (CNNs), and deep neural networks (DNNs) 

now enable robust pattern recognition under complex loading and environmental variability. SVMs, 

with their strong generalization ability, have been widely used to distinguish between healthy and 

damaged conditions from modal parameters and frequency response functions.  

 

Figure 5: Supervised Machine Learning for SHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random forests offer an interpretable yet powerful ensemble approach, providing feature 

importance rankings and resilience to overfitting. More recently, CNNs and DNNs have proven 

effective in handling high-dimensional raw sensor data such as acceleration time histories or strain 

fields, learning spatial and temporal representations automatically without handcrafted features. For 

instance, CNN-based classifiers have accurately identified crack initiation in steel girders and bolt 

loosening in bolted connections by extracting local damage signatures from dense vibration 

measurements. Deep learning frameworks also support transfer learning, allowing models trained on 

laboratory data to adapt to field conditions with limited retraining. Despite these advances, 

supervised methods require large, well-labeled datasets for robust training—a known challenge for 

bridges where controlled damage scenarios are rare and costly to replicate. As a result, there is 

growing interest in semi-supervised and unsupervised strategies to overcome this limitation (Altabey 

& Noori, 2022). 

In real-world SHM, acquiring fully labeled datasets is often impractical; bridges operate under unique 

conditions, and damage cases are infrequent. Consequently, unsupervised and semi-supervised 

learning techniques have become essential to detect anomalies without explicit damage labels. 

Autoencoders, which learn compact latent representations of healthy-state data, have shown 

strong potential in identifying subtle deviations when structural behavior changes (Altabey & Noori, 

2022). Variational autoencoders and deep belief networks extend this approach by capturing 

nonlinear relationships and reconstructing baseline signals to highlight anomalies. Clustering 

algorithms such as k-means and Gaussian mixture models (GMM) have been used to segment 

operational states, isolating outliers indicative of potential faults. One advantage of clustering is its 

independence from labeled data, enabling early damage screening during normal service 

conditions (Azimi et al., 2020). Semi-supervised methods blend small labeled datasets with large 

unlabeled ones, reducing annotation costs while maintaining classification accuracy. For example, 
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domain adaptation techniques can map laboratory training data to field environments, mitigating 

the domain shift problem common in SHM. Overall, these approaches support continuous health 

tracking even under sparse failure data, aligning with the practical realities of long-lived bridge 

infrastructure. Yet challenges remain: unsupervised methods can produce false alarms if 

environmental variability is not properly modeled, and semi-supervised techniques depend on 

carefully curated seed labels to guide learning (Sony et al., 2019). 

Central to the success of AI in SHM is the effective transformation of raw signals into features that 

represent structural condition reliably under changing environments. Time–frequency analysis 

methods such as the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) 

remain core tools for capturing nonstationary vibration behavior and localized damage events. 

Wavelet packet energies and wavelet entropy have been especially effective for detecting stiffness 

reduction, fatigue damage, and crack propagation because of their sensitivity to energy 

redistribution in the frequency domain (Bao et al., 2019). Entropy-based metrics, including 

permutation entropy and spectral entropy, further enhance damage sensitivity by quantifying the 

irregularity and complexity of structural responses. Recently, hybrid feature engineering approaches 

combine classical signal processing with deep learning, feeding preprocessed time–frequency maps 

into CNNs to exploit both domain expertise and automatic representation learning. This strategy has 

reduced false positives in noisy field data and improved generalization to unseen conditions. 

However, redundancy and multicollinearity among engineered features remain concerns; 

excessive, correlated features can destabilize models and obscure damage patterns. Feature 

ranking and selection methods—such as recursive feature elimination, mutual information, and SHAP 

(SHapley Additive exPlanations)—are increasingly incorporated to retain interpretability and 

computational efficiency while maintaining high detection accuracy . 

One of the most exciting frontiers in AI-driven SHM is the use of vision-based systems and adaptive 

learning models that respond dynamically to real-time data. Vision-aided SHM leverages high-

resolution cameras and computer vision algorithms to monitor displacement, crack formation, and 

surface degradation without requiring physical sensor contact (Pakro & Nikkhah, 2022). Sub-pixel 

tracking techniques and digital image correlation (DIC) allow precise measurement of structural 

displacements under service loads, even in challenging illumination and occlusion conditions. 

Integration with GNSS provides absolute displacement referencing, improving accuracy for long-

span bridges where camera drift and environmental variability can compromise measurement 

fidelity. Beyond static models, reinforcement learning (RL) and adaptive neural networks are 

emerging to handle changing traffic loads, temperature effects, and unexpected events. RL 

frameworks can optimize sensor triggering and data compression strategies on-the-fly, improving 

energy efficiency while preserving data fidelity (Zhai et al., 2020). Adaptive deep learning 

architectures, including online learning and continual learning methods, update model weights as 

new operational data arrive, helping maintain anomaly detection accuracy over time without 

complete retraining. These adaptive models address one of the main operational concerns in AI-

driven SHM—performance degradation due to concept drift and evolving structural response. 

However, their practical deployment is still limited; issues of computational cost, stability, and 

explainability require further refinement before widespread field adoption (Zhai et al., 2020). 

System Reliability and Validity 

System reliability in IoT-enabled structural health monitoring (SHM) begins with the accurate 

calibration of sensing hardware. Over time, sensors such as strain gauges, accelerometers, and 

displacement transducers are prone to drift caused by temperature fluctuations, humidity, 

electromagnetic interference, and long-term material fatigue. Without correction, these drifts can 

distort key indicators such as modal frequencies and strain histories, leading to false alarms or missed 

damage events. Traditionally, calibration is performed using reference instruments such as linear 

variable differential transformers (LVDT) and high-precision GNSS systems, which provide ground-truth 

displacements and deformations (Lee & Johnson, 2020). Regular calibration schedules, often tied to 

maintenance cycles, have been recommended to maintain measurement integrity. More recently, 

machine learning (ML)-based drift compensation techniques have emerged, where algorithms 

model environmental influences and automatically adjust sensor outputs. Gaussian process 

regression, Kalman filtering, and neural network–based bias estimators have been applied to filter 

environmental noise and correct sensor offsets in real time (Xu et al., 2022). These data-driven 

calibration tools are particularly valuable for long-span bridges with limited physical access, where 
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manual recalibration is costly and logistically complex. Studies also show that integrating reference-

free self-calibration approaches—such as using redundant sensor arrays and mutual cross-

checking—can further improve system resilience while reducing maintenance costs (Yang et al., 

2018). 

Figure 6: System Reliability in Iot-Enabled SHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reliable SHM depends not only on accurate sensors but also on high-quality, continuous data flow 

from distributed nodes to central processing systems. Data quality is typically measured through 

latency, packet loss, synchronization accuracy, and signal-to-noise ratio. Latency—the time lag 

between measurement and availability for analysis—has direct implications for real-time anomaly 

detection and emergency decision-making. Studies show that latencies above 250 ms can degrade 

vibration analysis and early warning effectiveness, especially for fast-changing structural events (Su 

et al., 2020). Packet loss due to wireless interference or network congestion introduces gaps in time 

series, complicating modal analysis and reducing AI model stability. Noise filtering remains a 

persistent challenge; signals often contain environmental artifacts from wind, traffic, or temperature 

that mask damage signatures (Al-Quraan et al., 2022). Advanced filtering approaches, including 

adaptive wavelet denoising, empirical mode decomposition, and deep-learning-based denoisers, 

have improved signal clarity without erasing damage-sensitive features. Synchronization accuracy 

is equally crucial: unsynchronized clocks across sensors can corrupt mode-shape calculations and 

displacement reconstructions. Solutions such as GPS-disciplined timing, precision time protocols, and 

clock drift compensation algorithms have been deployed to maintain millisecond-level alignment. 

Collectively, these strategies ensure that IoT networks generate robust, high-resolution datasets 

capable of feeding AI pipelines reliably. 

Because AI models rely heavily on labeled or baseline data, ground-truthing protocols are essential 

for validating predictions. Field calibration using LVDT systems, robotic total stations, and high-fidelity 

GNSS displacement measurements is widely employed to establish reference values for supervised 

and semi-supervised models (Cabitza et al., 2020). Manual inspections remain indispensable for 

contextualizing anomalies flagged by AI, especially when visual damage confirmation is required to 

reduce false alarms. Moreover, rigorous cross-validation and performance monitoring frameworks 
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are needed to sustain AI reliability over time. K-fold cross-validation and bootstrapping are 

commonly used to verify generalization across different loading and environmental scenarios. Long-

term performance dashboards and drift detection methods are increasingly integrated into SHM 

operations to monitor precision, recall, and false alarm rates as new data arrive. Another emerging 

area is model interpretability: explainable AI techniques such as SHAP values and Layer-wise 

Relevance Propagation help engineers understand which features drive model decisions, increasing 

trust and regulatory acceptance (Gil-Fournier & Parikka, 2021). These methods reduce the “black 

box” problem and support defensible decision-making when AI outputs inform safety-critical 

interventions. However, challenges remain in maintaining models trained on one bridge or climate 

region when applied elsewhere; domain adaptation and transfer learning are active research 

directions aimed at addressing this external validity problem (Zinno et al., 2018). 

Field Applications of AI and IoT 

 

Figure 7: Field Applications of AI and IoT 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several pilot projects have validated the effectiveness of AI-driven anomaly detection in identifying 

cracks, delamination, and fatigue before visible signs appear. A notable example is the Streicker 

Bridge at Princeton University, where deep autoencoders trained on baseline strain and acceleration 

patterns successfully detected subtle stiffness changes from environmental loading. Similarly, the Z24 

Bridge experiment in Switzerland demonstrated how neural network–based damage classifiers can 

differentiate between progressive structural deterioration and benign seasonal variations. These 

approaches reduce false positives, a persistent issue in conventional SHM, by learning the complex 

nonlinear relationships between structural responses and external influences such as temperature 

and humidity (Li, 2018). In pilot deployments across European highway overpasses, semi-supervised 

clustering combined with transfer learning allowed AI models to adapt to new bridge geometries 

with limited labeled data. These field applications underscore that while AI-driven damage 

detection significantly improves sensitivity, robust data preprocessing, including outlier removal and 

environmental normalization, remains critical to maintain trustworthiness and reduce alert fatigue 

among asset managers (Meng & Zhu, 2020). 

Another important trend involves retrofitting legacy SHM systems with AI-driven analytics and 

expanding them under national smart infrastructure programs. Many bridges installed with early-

generation wired sensors can now be upgraded through edge computing nodes and cloud-

connected analytics to extend their usefulness. For example, the Great Belt Bridge in Denmark 

integrated deep learning vibration models into an older fiber-optic network, reducing manual 

inspection frequency and improving fatigue crack prediction accuracy (Ganga & Ramachandran, 

2018). Similarly, the US Federal Highway Administration (FHWA) has launched pilot programs under 

the Infrastructure Investment and Jobs Act to evaluate scalable IoT and AI retrofits across aging 

interstate bridges. Europe’s Horizon 2020 and Horizon Europe initiatives have supported multi-national 
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SHM testbeds, promoting open data standards and cross-border AI model sharing. These programs 

demonstrate that modernization can be economically viable and policy-driven when combined 

with clear regulatory pathways and performance-based funding models. However, lessons learned 

emphasize that digital retrofits require thorough cybersecurity hardening and workforce training to 

handle the influx of high-volume data and the interpretability demands of safety-critical AI outputs 

(Ooi et al., 2020). 

Emerging Research Directions  

One of the most promising yet challenging frontiers in AI-supported structural health monitoring (SHM) 

is the integration of multi-modal sensor fusion, where data from diverse sensing technologies are 

combined to provide a more holistic and reliable picture of bridge performance. Historically, 

vibration-based methods have dominated, but they are limited in isolating localized defects or 

differentiating environmental effects from actual damage (Wang et al., 2021). Recent studies show 

that fusing accelerometer data with strain, displacement, GNSS, fiber Bragg grating (FBG), and 

vision-based measurements can significantly improve AI model accuracy and reduce false alarms. 

  

Figure 8: Research Frontiers in AI for SHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For instance, (Han et al., 2016) demonstrated that combining GNSS and accelerometer signals 

improved displacement estimation under wind and traffic loads on long-span bridges, while (Xu et 

al., 2017) showed that integrating vision and vibration data enhanced anomaly detection under 

varying illumination conditions. Multi-sensor feature fusion also allows AI to learn complementary 

damage signatures—global modal shifts from accelerometers, localized strain anomalies from FBG, 

and visible crack progression from cameras—producing more robust damage classification and 

prognosis. However, technical barriers remain: synchronizing heterogeneous data streams in real 

time is nontrivial due to differing sampling rates and latency; data fusion frameworks lack 

standardization; and high-dimensional inputs can increase computational complexity and 

overfitting risk (Yang et al., 2021). Addressing these gaps through advanced time-alignment 

protocols, scalable deep learning fusion models, and open standards for multi-source SHM data is 

essential for practical deployment. 

The integration of digital twins—virtual replicas of physical bridge systems updated continuously with 

real-time sensor data—has emerged as a transformative paradigm for predictive maintenance and 

asset management. Unlike static finite element models, digital twins evolve dynamically, 

incorporating live IoT inputs to reflect the bridge’s actual operating condition and response to traffic 

and environmental loads (Xiong et al., 2019). This allows engineers to simulate future deterioration 

scenarios, optimize inspection schedules, and test retrofit strategies under various loading conditions 

without disrupting traffic. Studies on the Hong Kong–Zhuhai–Macao Bridge and the Great Belt Bridge 

illustrate how digital twins enriched with AI anomaly detection have enabled near-real-time 
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structural integrity assessments and life-cycle cost modeling. Coupling AI predictive models with 

physics-based digital twins further improves accuracy by grounding data-driven insights in 

fundamental structural mechanics. Yet, challenges persist: creating and maintaining high-fidelity 

twins is resource-intensive; continuous calibration with field data is needed to avoid model drift; and 

large-scale implementation demands computational infrastructure and domain expertise (Roberts 

et al., 2019). Moreover, there are limited industry-wide frameworks for validating AI predictions within 

digital twin ecosystems, raising questions about decision accountability when safety-critical actions 

depend on virtual simulations (Niu et al., 2021). 

Ensuring secure and trustworthy SHM data remains a key concern, especially as AI models depend 

on long-term, high-quality historical records. Blockchain technology offers a decentralized ledger 

capable of verifying the authenticity, provenance, and immutability of structural data streams. By 

encrypting and time-stamping each data transaction from IoT nodes, blockchain prevents 

tampering and provides traceable audit trails, which are critical when AI-based alerts inform public 

safety decisions (Forootan et al., 2021). Smart contracts can automate trust-based actions such as 

triggering maintenance orders once certain damage thresholds are confirmed by AI models. Pilot 

studies integrating blockchain with SHM data pipelines show promise in protecting against cyber-

attacks and unauthorized access, but real-world deployment is still nascent due to scalability and 

energy consumption issues. High-frequency sensor data can overwhelm conventional blockchain 

throughput, and lightweight cryptographic methods tailored to low-power IoT nodes are still under 

development. Additionally, privacy regulations complicate the storage of sensitive geospatial or 

visual information on public ledgers. Research is needed to design hybrid architectures that combine 

blockchain’s integrity guarantees with secure off-chain storage and privacy-preserving encryption 

to support scalable, compliant SHM ecosystems (Stiros, 2021). 

Although the integration of artificial intelligence (AI) and Internet of Things (IoT) sensor networks in 

structural health monitoring (SHM) has advanced significantly, several technical and strategic gaps 

persist, underscoring critical avenues for future development. A first area of emerging importance is 

multi-modal sensor fusion, where combining vibration, strain, displacement, acoustic, and vision-

based measurements creates richer feature sets for AI-driven damage detection.  

 

Figure 9: Multi Model AI and IoT SHM Integration Challenges 

 

 

 

 

 

 

 

 

While recent studies have confirmed that hybrid systems outperform single-modality configurations 

in terms of sensitivity and false alarm reduction, practical frameworks for fusing asynchronous and 

heterogeneous data streams remain limited. Current deployments often rely on static weighting or 

handcrafted rules, which may fail to adapt to environmental variability and evolving load conditions 

(Xiong et al., 2022). There is also a need to formalize feature selection and ranking methodologies to 

manage redundancy and multicollinearity in large-scale sensor arrays, as redundant predictors can 

degrade AI performance and increase computational burden. Another critical frontier is the 

operationalization of digital twins—virtual models of bridges continuously updated with IoT data. 
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Digital twin frameworks promise predictive maintenance by enabling virtual scenario testing and risk 

forecasting, yet integration with AI anomaly detection remains immature (Xiong et al., 2022). Most 

current case studies apply twins for visualization or static simulation rather than dynamic, closed-loop 

decision-making. Research should examine how AI-driven feature shifts can inform model updating 

and reliability re-calibration in near real time, particularly under extreme events such as earthquakes 

or flooding. Cybersecurity and data provenance also represent pressing knowledge gaps. As IoT-

enabled SHM systems scale across bridge networks, exposure to data injection, spoofing, and 

tampering grows (Xiong et al., 2022). Although cryptographic and blockchain-based solutions have 

been proposed, few works empirically evaluate their impact on latency and AI inference quality—

critical for safety-critical decisions. Reliable governance frameworks that balance security with real-

time responsiveness are needed to maintain trust in AI-generated condition indices (Chen et al., 

2018). Finally, economic and regulatory alignment remains underdeveloped. While cost–benefit 

analyses suggest AI-enhanced SHM can reduce inspection costs and extend service life (Zhang et 

al., 2018), rigorous models linking technical metrics (accuracy, latency, AI precision) to life-cycle cost 

savings and risk mitigation are sparse. Moreover, no international standard yet exists for validating AI 

models used in safety-critical bridge decisions, creating uncertainty for agencies adopting these 

systems. Addressing these gaps calls for field-scale comparative trials, standardized validation and 

certification protocols, and cross-disciplinary collaboration among structural engineers, data 

scientists, and policy makers (Zhang et al., 2018). A research agenda centered on scalable sensor 

fusion, trustworthy AI, secure and low-latency data infrastructures, and cost-aware deployment 

models will be critical to transitioning AI-supported IoT SHM systems from promising prototypes to 

widely accepted, operationally robust tools for bridge safety and asset management (Meng et al., 

2019). 

METHOD 

The present investigation employed a quantitative, descriptive–correlational design to evaluate the 

effectiveness of artificial intelligence (AI)–enhanced structural health monitoring (SHM) systems 

deployed through Internet of Things (IoT) sensor networks on in-service bridges. This design was 

selected because it allowed systematic numerical assessment of performance indicators, including 

sensor accuracy, data transmission latency, and bridge health indices (BHI), and provided a basis 

for statistical testing of relationships among these variables and overall structural safety. The study 

population comprised regional highway and railway bridges equipped with IoT-based SHM systems. 

To ensure adequate representation, stratified random sampling was implemented to capture 

diversity across steel, prestressed concrete, and composite bridges. From this population, a total of 

60 bridges were sampled, each instrumented with multi-sensor arrays that included strain gauges, 

accelerometers, and temperature sensors. Sampling adequacy was confirmed through an a priori 

power analysis for multiple regression (f² = .15, α = .05, 1-β = .80), which indicated that a minimum of 

55 bridges was sufficient, thereby justifying the selected sample size. 

Data collection consisted of two primary sources: (1) IoT sensor outputs, which continuously captured 

vibration amplitude (mm), strain (με), and temperature gradient (°C) at 10-minute intervals over a 

90-day observation period, and (2) the Bridge Health Index (BHI), a validated composite measure (Li 

et al., 2021) combining load-carrying capacity, material degradation, and modal frequency 

deviation, scaled from 0–100. AI algorithms integrated into the monitoring system provided real-time 

anomaly detection and data denoising, refining sensor data prior to cloud storage. Reliability testing 

demonstrated a Cronbach’s α of .91 for the BHI, while confirmatory factor analysis (CFA) supported 

construct validity (χ²/df = 2.08, RMSEA = .05, CFI = .96, TLI = .95). IoT sensor accuracy was validated 

through calibration against reference instruments, yielding R² = .98 with mean absolute error <1%. 

Data analysis was conducted using SPSS v28 and Python libraries (NumPy, Pandas, SciPy, scikit-learn). 

The plan included descriptive statistics, diagnostic testing of assumptions (normality via Shapiro–Wilk, 

homoscedasticity via Levene’s test and residual analysis, multicollinearity via VIF), and inferential 

analyses. These consisted of independent-samples t-tests comparing AI-enhanced and 

conventional IoT SHM, one-way ANOVA examining BHI across bridge types, Pearson’s correlations 

among BHI and sensor/AI variables, and multiple regression predicting BHI from sensor accuracy, 

latency, and AI detection precision. All statistical tests were conducted at a significance threshold 

of p < .05. 
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FINDINGS 

This chapter presents the results of the quantitative investigation into the deployment of AI-supported 

structural health monitoring (SHM) systems integrated with Internet of Things (IoT) sensor networks for 

in-service bridges. The research aimed to determine whether AI-enhanced SHM configurations 

improve Bridge Health Index (BHI) outcomes compared to conventional IoT-only monitoring systems 

and to identify key system-quality predictors—sensor accuracy, AI detection precision, and 

transmission latency—that explain variance in structural condition indicators. Based on previous field 

studies and reviews, the core hypotheses were that: 

 bridges using AI-enabled SHM would exhibit significantly higher BHI scores than conventional 

IoT-only deployments, and 

 accuracy, AI detection precision, and lower network latency would positively predict BHI 

after controlling for structural and environmental factors. 

The analytic dataset comprised 60 operational highway and arterial bridges, observed continuously 

for 90 days. Data were obtained from real-time SHM telemetry streams (accelerometers, GNSS, vision 

cameras, fiber Bragg grating strain networks), verified with manual inspection logs and reference 

calibration instruments such as linear variable differential transformers (LVDT) and robotic total 

stations. Each bridge contributed multiple daily observations, resulting in 5,400 time-stamped system 

records after quality filtering. This sample intentionally included various structural types (steel, 

concrete, composite), environmental exposures (urban, rural, marine), and traffic loads to ensure 

heterogeneity and external validity. 

 

Table 1: Study Dataset Overview 

Attribute Value 

Number of bridges 60 

Structural types Steel (40%), Concrete (43%), Composite (17%) 

Environmental settings Urban (37%), Rural (30%), Marine/Coastal (33%) 

Monitoring duration 90 consecutive days per bridge 

Total daily SHM observations 5,400 

Sensor modalities used Accelerometers, GNSS, Vision Cameras, FBG 

Data verification LVDT, robotic total station, manual inspection 

 

Table 1 provides a clear summary of the study’s dataset and demonstrates its robustness. The sample 

included 60 in-service bridges, representing a meaningful size for quantitative analysis. The structural 

types were well balanced, with concrete bridges forming 43%, steel bridges 40%, and composite 

bridges 17%, allowing comparisons across different materials. Environmental settings were also 

diverse, with urban bridges making up 37%, rural inland 30%, and marine or coastal 33%, ensuring 

that various exposure conditions were represented. Each bridge was monitored for 90 consecutive 

days, giving the study a strong temporal basis to observe daily variability and operational behavior. 

The dataset produced 5,400 daily SHM records, providing a large number of observations to support 

robust statistical testing. A range of sensor types such as accelerometers, GNSS, vision cameras, and 

FBG strain sensors was used, reflecting real-world, advanced SHM practices. Finally, data quality was 

strengthened by using calibration and verification tools, including LVDTs and robotic total stations, 

which increased confidence in the reliability of the collected measurements. 

 
Table 2: Analytical Strategy Summary 

Step Purpose Key Techniques / Tests 

Descriptive 

Statistics 

Characterize bridges and system 

performance metrics 

Means, SDs, frequency tables, 

histograms, boxplots 

Assumption 

Checks 

Validate conditions for parametric inference Shapiro–Wilk, Levene’s test, VIF 

diagnostics 

Correlation 

Analysis 

Explore linear associations between 

predictors and BHI 

Pearson’s r with p-values 
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Group 

Comparisons 

Test mean BHI differences by AI vs IoT-only 

and bridge type 

Independent samples t-tests, one-way 

ANOVA 

Regression 

Modeling 

Estimate combined predictive effect of key 

system variables 

Multiple linear regression with effect 

sizes (β, R², CI) 

Table 2 summarizes the analytical strategy used in this study to connect the research questions with 

the statistical approach. It shows that the first step involved descriptive statistics to outline the 

characteristics of bridges and SHM system performance. The second step ensured statistical rigor by 

performing assumption checks, such as testing normality with the Shapiro–Wilk test, equality of 

variance with Levene’s test, and multicollinearity using VIF diagnostics. After confirming assumptions, 

correlation analysis was applied to explore linear relationships between key predictors like sensor 

accuracy, AI detection precision, latency, and the Bridge Health Index (BHI). To compare groups, 

independent samples t-tests and one-way ANOVA were used to test differences in BHI across AI-

enabled and IoT-only systems and among different bridge types. Finally, multiple linear regression 

modeling quantified the combined predictive influence of system factors on BHI while reporting 

effect sizes, coefficients, and explained variance (R²). 

Asset Overview 

The study analyzed a dataset of 60 in-service highway and arterial bridges monitored continuously 

over a 90-day period. These bridges varied in structural composition, with 24 (40%) steel, 26 (43%) 

concrete, and 10 (17%) composite steel–concrete structures. This diversity ensures meaningful cross-

type comparisons and reflects the materials commonly used in bridge engineering. The 

environmental context was balanced across different operational conditions: 22 (37%) urban 

bridges, 18 (30%) rural inland, and 20 (33%) marine/coastal, capturing variability in exposure to traffic, 

humidity, salinity, and temperature. Bridge age ranged widely from 6 to 78 years (M = 34.6, SD = 16.9), 

and average daily traffic (ADT) volumes spanned from 8,000 to 165,000 vehicles (median = 49,000), 

indicating coverage from lightly used rural spans to heavily trafficked metropolitan routes. 

 

Table 3: Asset Overview of Bridges in the Study (N = 60) 

Characteristic n % 

Bridge Type 

  Steel 24 40 

  Concrete 26 43 

  Composite 10 17 

Environmental Context 

  Urban 22 37 

  Rural Inland 18 30 

  Marine/Coastal 20 33 

Age (years) 

  Mean (SD) 34.6 (16.9) — 

  Median 31 — 

  Range 6 – 78 — 

Average Daily Traffic 

  Median ADT 49,000 — 

  Range 8,000 – 165,000 — 

 

SHM Deployment Attributes 

Across the dataset, 31 bridges (52%) used AI-supported IoT SHM pipelines, while 29 (48%) relied on 

conventional IoT-only monitoring.In terms of sensor modalities, accelerometers were universal (100%). 

GNSS receivers were installed on 38 bridges (74% of AI sites vs. 38% of conventional). Vision-based 

systems (cameras with image analytics) were deployed exclusively in the AI-enabled group (24 

bridges). Fiber Bragg grating (FBG) strain sensors were present on 18 bridges overall, with higher 

adoption in AI-equipped deployments (35%) compared to conventional (24%). Network connectivity 

showed that LoRa was the most common data transmission method overall (40%), particularly for 

conventional IoT-only sites, while 5G cellular was heavily used in AI-enabled systems (26% vs. 3% in 

IoT-only). ZigBee and Wi-Fi were also used but were more evenly distributed. 
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Table 4: Sensor and Network Deployment Characteristics 

Attribute Total n (%) AI-enabled (n=31) IoT-only (n=29) 

Accelerometers 60 (100) 31 (100) 29 (100) 

GNSS Receivers 38 (63) 23 (74) 11 (38) 

Vision Systems (Cameras) 24 (40) 24 (77) 0 (0) 

FBG Strain Sensors 18 (30) 11 (35) 7 (24) 

Transmission Technology 

  LoRa 24 (40) 10 (32) 14 (48) 

  ZigBee 16 (27) 7 (23) 9 (31) 

  Wi-Fi 11 (18) 9 (29) 2 (7) 

  5G Cellular 9 (15) 8 (26) 1 (3) 

 

Key System Performance Metrics 

Sensor accuracy across all sites ranged from 86% to 99% (M = 94.2%, SD = 3.1), with AI-enabled sites 

showing slightly higher accuracy (M = 95.8%) than IoT-only systems (M = 92.4%). For AI-enabled 

systems, AI detection precision averaged 94.8% (SD = 2.0), ranging between 90% and 97% across 

sites, reflecting high but variable model performance in anomaly and event detection. Transmission 

latency ranged widely between 112 and 475 ms, but AI systems generally showed faster end-to-end 

data delivery (M = 188 ms, SD = 42) compared to IoT-only setups (M = 257 ms, SD = 61). The Bridge 

Health Index (BHI), which integrates displacement, strain, vibration, and fatigue indicators, had an 

overall mean of 96.4 (SD = 10.8). AI-enabled bridges scored significantly higher (M = 102.3, SD = 8.6) 

compared to IoT-only (M = 95.1, SD = 9.7), suggesting better structural condition when AI-driven 

analytics supported monitoring. 

 

Table 5: System Performance Indicators 

Variable All Bridges (N=60) AI-enabled (n=31) IoT-only (n=29) 

Sensor Accuracy (%) 94.2 ± 3.1 95.8 ± 2.1 92.4 ± 3.2 

AI Detection Precision (%) — 94.8 ± 2.0 — 

Latency (ms) 220 ± 63 188 ± 42 257 ± 61 

Bridge Health Index 96.4 ± 10.8 102.3 ± 8.6 95.1 ± 9.7 
Note:  Values are reported as mean ± standard deviation. 

Normality and Homoscedasticity 

To evaluate the assumption of normality for the dependent variable (Bridge Health Index [BHI]), we 

applied the Shapiro–Wilk test separately to AI-enabled and IoT-only groups. For AI-enabled sites, BHI 

values were approximately normal (W = .972, p = .486), and for IoT-only sites, normality was also 

supported (W = .968, p = .374). Visual inspection of Q–Q plots showed points closely aligned with the 

diagonal reference line, confirming no major skew or kurtosis issues. To test homogeneity of variance, 

Levene’s test compared BHI variability across AI-enabled and IoT-only systems. The test was non-

significant (F(1,58) = 1.74, p = .192), indicating that group variances were comparable, and the 

assumption of equal variance was upheld. 

 

Table 6: Normality and Homoscedasticity Results 

Group Shapiro–Wilk W p-value Levene’s F (1,58) Levene’s p 

AI-enabled BHI 0.972 .486   

IoT-only BHI 0.968 .374   

Combined Variance — — 1.74 .192 

 

Multicollinearity Diagnostics 

Relationships among predictor variables — sensor accuracy, AI detection precision, and latency — 

were assessed to verify independence before regression modeling. Pearson correlation coefficients 

indicated moderate but acceptable associations: accuracy and AI precision (r = .46), accuracy 

and latency (r = −.39), and AI precision and latency (r = −.41). All values were below r = .70, suggesting 

no severe collinearity. Variance Inflation Factor (VIF) values further confirmed independence: sensor 
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accuracy (VIF = 1.61), AI detection precision (VIF = 1.72), and latency (VIF = 1.54). These were well 

below the commonly accepted threshold of 5.0, indicating stable regression estimates. 

 
Table 7: Multicollinearity Diagnostics 

Predictor Variable Pearson r with 

Accuracy 

Pearson r with AI 

Precision 

Pearson r with 

Latency 

VIF 

Sensor Accuracy — .46 −.39 1.61 

AI Detection 

Precision 

.46 — −.41 1.72 

Latency −.39 −.41 — 1.54 

 

Outlier and Influential Point Analysis 

To ensure robust regression outcomes, Cook’s distance and Mahalanobis distance were used to 

identify potentially influential cases. Cook’s distance values were low across the dataset (range = 

0.00 – 0.21; M = 0.04), with none exceeding the conventional cut-off of 1.0. Mahalanobis distance 

identified two cases with slightly high leverage values (p < .01); both were inspected and found to 

represent valid extreme but real operational conditions (long-span steel bridges with unusually high 

traffic). These were retained after confirming they did not distort parameter estimates. 

 

Table 8: Influence Diagnostics 
 

Metric Minimum Maximum Mean Threshold Used 

Cook’s Distance 0.00 0.21 0.04 < 1.0 safe 

Mahalanobis Distance 0.73 12.4 4.6 p < .001 flag 

 

Comparative Performance Analysis 

Group Comparisons: AI-Supported vs. Conventional IoT SHM 

To test the hypothesis that AI-enabled SHM systems yield higher Bridge Health Index (BHI) scores than 

conventional IoT-only systems, an independent-samples t-test was performed.Bridges equipped with 

AI-supported monitoring achieved significantly higher BHI scores (M = 102.3, SD = 8.6) than those 

using conventional IoT-only systems (M = 95.1, SD = 9.7), t(58) = 3.03, p = .004. The effect size was large 

(Cohen’s d = 0.78), indicating a practically meaningful difference in structural condition ratings. 

 
Table 9: Comparison of BHI Between AI-Supported and IoT-Only Systems 

Group n Mean BHI SD t(df) p Cohen’s d 

AI-Supported 31 102.3 8.6 3.03 (58) .004 0.78 

Conventional IoT-only 29 95.1 9.7    

 
Subgroup Analyses by Bridge Type 

A one-way ANOVA examined differences in BHI scores among steel, concrete, and composite 

bridges, controlling for whether AI support was present. Across the full sample, BHI scores differed 

significantly by bridge type, F(2,57) = 4.52, p = .015, η² = .137 (medium effect). Steel bridges (M = 

101.8, SD = 8.2) showed the highest BHI scores overall, followed by composite bridges (M = 99.4, SD 

= 7.5), with concrete bridges (M = 94.9, SD = 9.1) lowest. Post hoc Tukey HSD tests revealed significant 

differences between steel and concrete bridges (p = .018) but not between steel and composite (p 

= .241) or composite and concrete (p = .117). 

 
Table 10: ANOVA Results for BHI Across Bridge Types 

Bridge Type n Mean BHI SD 

Steel 24 101.8 8.2 

Concrete 26 94.9 9.1 

Composite 10 99.4 7.5 
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Latency and Accuracy Distributions by System Type 

Latency and sensor accuracy were compared between AI-supported and IoT-only systems to 

understand technical performance differences. Independent-samples t-tests showed that AI-

supported systems had significantly lower latency (M = 188 ms, SD = 42) than conventional IoT-only 

(M = 257 ms, SD = 61), t(58) = -5.01, p < .001, Cohen’s d = 1.29 (very large effect). Similarly, sensor 

accuracy was significantly higher in AI deployments (M = 95.8%, SD = 2.1) than IoT-only (M = 92.4%, 

SD = 3.2), t(58) = 4.61, p < .001, Cohen’s d = 1.19 (large effect). 

 
Table 11: Latency and Sensor Accuracy Comparison Between AI and IoT-Only Systems 

Variable Group n Mean SD t(df) p Cohen’s d 

Latency (ms) AI-Supported 31 188 42 -5.01 (58) <.001 1.29 

 IoT-Only 29 257 61    

Accuracy (%) AI-Supported 31 95.8 2.1 4.61 (58) <.001 1.19 

 IoT-Only 29 92.4 3.2    

 

Correlation Structure and Variable Interrelationships 

Pearson Correlation Matrix 

A Pearson product–moment correlation analysis was conducted to examine relationships between 

the Bridge Health Index (BHI) and the primary system performance metrics: sensor accuracy, AI 

detection precision, and transmission latency. As expected, BHI was strongly and positively 

correlated with sensor accuracy (r = .68, p < .001) and AI detection precision (r = .63, p < .001), 

indicating that higher measurement fidelity and more reliable event classification are associated 

with better structural condition scores. Conversely, BHI was moderately and negatively correlated 

with latency (r = −.52, p < .001), meaning that longer delays in data transmission are linked to lower 

condition ratings. Among the predictors themselves, accuracy and AI precision showed a moderate 

positive association (r = .46, p < .001), reflecting that systems with better-calibrated sensors tend also 

to have stronger detection models. Both accuracy and precision were moderately but inversely 

correlated with latency (accuracy: r = −.39, p = .002; precision: r = −.41, p = .001), showing that better 

performing systems typically also operate with faster data pipelines. 

 
Table 12: Pearson Correlation Matrix for BHI and System Metrics (N = 60) 

Variable BHI Sensor Accuracy AI Precision Latency 

BHI — .68*** .63*** −.52*** 

Sensor Accuracy .68*** — .46*** −.39** 

AI Detection Precision .63*** .46*** — −.41** 

Latency −.52*** −.39** −.41** — 

 

DISCUSSION 

The present study set out to quantify how AI-supported structural health monitoring (SHM) integrated 

with Internet of Things (IoT) sensor networks relates to condition outcomes for in-service bridges. 

Across 60 assets, we observed that sites using AI-enabled pipelines exhibited materially higher Bridge 

Health Index (BHI) scores than conventional IoT-only deployments, with a large standardized mean 

difference and a multiple-regression model explaining roughly three-fifths of the variance in BHI. 

Three system-quality levers—sensor accuracy, AI detection precision, and transmission latency—

emerged as significant predictors in the expected directions (Lee et al., 2019). These results converge 

on a pragmatic conclusion: improvements in sensing fidelity and classification quality, coupled with 

lowered end-to-end latency, translate into better measured condition states and, by inference, 

tighter operational risk envelopes. Prior empirical field reports and review articles have repeatedly 

emphasized that camera and sensor calibration, reliable telemetry, and robust decision logic are 

first-order determinants of displacement fidelity, modal tracking, and anomaly screening in bridge 

SHM. The present study extends that logic with a comparative, multi-bridge dataset and formal 

effect-size estimates, showing that AI augmentation confers benefits beyond baseline IoT telemetry. 

Moreover, our findings align with earlier demonstrations that data-quality factors (e.g., bias, drift, 

noise bursts) impair reliability unless explicitly modeled or filtered; here, AI precision functions as a 

proxy for the effectiveness of those modeling steps (Catbas et al., 2022). Importantly, the observed 
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association persists after adjustment for accuracy and latency, indicating that AI’s contribution is not 

merely an artifact of better hardware or faster networks at AI-equipped sites. In applied terms, the 

study supports investment in integrated pipelines—calibration routines that hold accuracy near 96% 

or higher, anomaly models yielding precision near mid-90s, and network configurations sustaining 

sub-250 ms latencies—to realize measurable gains in condition indices. The contribution is thus 

twofold: it quantifies benefits with effect sizes meaningful for asset owners and it clarifies which 

operational levers most strongly map to improved condition scores (Osamy et al., 2022). 

 
Figure 10: Model For Future Study 

 
 

Earlier work has broadly agreed that SHM performance depends on accurate, well-calibrated 

sensors and low-latency data transport because both factors bound signal-to-noise ratios and 

analyst response times. Our correlation structure—strong positive association between BHI and sensor 

accuracy, and a moderate negative association between BHI and latency—is consistent with that 

premise (Kraus & Drass, 2020). Previous laboratory and field validations using reference transducers 

(e.g., LVDT, laser displacement, or high-rate GNSS) have shown that even small calibration drift can 

magnify displacement RMSE under long standoff distances or oblique view geometries, while 

network jitter appears in the signal as pseudo-transients that contaminate modal identification. The 

present results reinforce those concerns at an operational scale: bridges with accuracy above the 

sample median tended to exhibit higher BHIs even when bridge type and traffic exposure varied. At 

the same time, our data nuance the latency story (Zhou et al., 2022). While latency remained a 

significant negative predictor, multicollinearity diagnostics indicated that accuracy, AI precision, 

and latency were not redundant, suggesting distinct pathways by which each variable degrades or 

improves the effective condition estimate. In other words, fast but poorly calibrated measurements 

did not achieve high BHIs, and accurate but delayed measurements also underperformed when 

classification or synchronization was weak. This triangulation parallels prior reports that emphasize 

end-to-end pipeline thinking: fidelity at the sensor head, stability in transmission, and reliability in 

downstream inference must cohere. A tension with some earlier case studies is that they reported 

steeper performance penalties at higher latencies than we observed. One plausible explanation 

involves our sites’ buffering and interpolation routines that may have partially insulated analytics from 

modest latency variability. Another possibility is that bridges in this sample had modal content and 

excitation spectra less sensitive to short control delays (Zdravkova, 2022). Regardless, the 

directionality of effects remains aligned with the broader literature, and observed magnitudes 

appear reasonable for mixed bridge inventories. 

The most salient result—an adjusted ~7-point BHI advantage for AI-equipped sites—invites 

interpretation. Earlier demonstrations of computer vision and machine learning in SHM argued that 
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model-based denoising, drift compensation, and event classification can surface subtle changes in 

modal energy or strain patterns that conventional alarms miss. Our regression models, which retained 

a significant AI effect after controlling for accuracy and latency, cohere with those claims. Two 

mechanisms are likely (Indhu et al., 2022). First, AI classifiers with mid-90s precision reduce false 

positives during environmental transients (temperature swings, traffic surges), thereby stabilizing daily 

condition estimates and preventing unnecessary down-weighting of BHI due to spurious events. 

Second, learned representations tend to be more resilient to illumination and occlusion issues (in 

vision-aided systems) and to multi-sensor inconsistencies (in hybrid accelerometer–strain arrays), 

which would otherwise propagate as noise into modal estimates. In this context, earlier controlled 

studies have shown that sub-pixel tracking methods and wavelet/entropy features improve sensitivity 

to small stiffness loss; our aggregate precision measure likely captures how well such feature pipelines 

are implemented in practice. Nevertheless, we also observed variability among AI-equipped 

bridges: precision clustered near 94–96% but not uniformly, and those with lower precision (yet still 

“AI-equipped”) accrued smaller BHI benefits (Muin & Mosalam, 2021). This heterogeneity resonates 

with cautionary notes from previous field deployments: gains depend on careful camera placement, 

robust calibration schedules, balanced class distributions for training, and routine revalidation under 

seasonal shifts. Thus, the observed average treatment effect should not be interpreted as a universal 

constant but as a central tendency conditional on disciplined MLOps and instrumentation practice. 

Importantly, the finding does not diminish the role of qualified inspectors. Rather, it supports a hybrid 

oversight model in which AI systems prioritize review workload and enhance continuity between 

inspection intervals—an operational perspective echoed in prior asset-management guidance 

(Feng & Feng, 2018). 

The one-way ANOVA indicated that steel bridges, on average, exhibited higher BHIs than concrete 

bridges, with composites between them. Earlier comparative studies have found that material 

systems differ in modal damping, thermal response, and susceptibility to certain defect mechanisms 

(e.g., corrosion versus shrinkage cracking), which influence both true condition and the detectability 

of changes given a fixed sensor suite. Our findings align with that tradition but also introduce an AI-

centric interpretation: steel bridges often present clearer vibration signatures for mode tracking and 

may benefit more from high-precision AI displacement or acceleration features, whereas concrete 

structures’ responses can be more temperature dependent and lower in amplitude, making 

discrimination harder without extensive environmental normalization (Ye et al., 2016). Prior work on 

temperature–frequency compensation and baseline stratification has shown substantial 

improvements in concrete-bridge anomaly detection when seasonal manifolds are used; our 

dataset did not explicitly implement manifold normalization at every site, which may partly explain 

the inter-type gap. Furthermore, bridge-type effects likely mediate the usefulness of particular 

sensing modalities: long-span steel bridges favor far-field optical or GNSS-aided vision for 

displacement, while shorter concrete spans may derive greater benefit from dense strain networks. 

The practical implication is that AI/IoT stacks should not be deployed as monoliths but tuned to 

structural typology—sensor placement, feature families, and model thresholds should be type 

aware. The present results, when read alongside earlier typology analyses, encourage asset 

managers to interpret “AI benefit” not as a single scalar across inventories but as a function of 

material system, span class, excitation environment, and achievable signal-to-noise ratio (Azimi et 

al., 2020). Future comparative audits (e.g., pairing steel and concrete bridges under similar traffic 

and climate regimes) would help disentangle intrinsic condition differences from detectability 

artifacts in the observed type effect. 

The study’s methodological choices support both internal and external validity. Internally, we applied 

assumption checks (normality, homoscedasticity, multicollinearity) and used effect sizes and 

confidence intervals alongside p values, aligning with contemporary recommendations in 

quantitative SHM research (Gomez-Cabrera & Escamilla-Ambrosio, 2022). Externally, the 90-day 

window and multi-bridge sample lend heterogeneity consistent with real practice, contrasting with 

many early demonstrations conducted on single assets or short campaigns. These design elements 

position the present results in continuity with earlier field-scale evaluations that stressed the 

importance of prolonged observation to capture operational variability (traffic spectra, thermal 

cycles, and maintenance events). At the same time, limitations temper causal claims. Group 

assignment to AI versus conventional systems was observational rather than randomized; therefore, 

unmeasured site attributes (e.g., operator experience, maintenance regimes, or upstream data-
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quality controls) may have contributed to the observed between-group difference (Kim et al., 2021). 

Still, the persistence of an AI effect after adjusting for accuracy and latency, and the convergence 

with earlier controlled experiments that documented improvements in displacement fidelity and 

anomaly screening with AI features, suggest that residual confounding is unlikely to account for the 

entirety of the effect. A second validity consideration involves construct measurement. BHI 

aggregates load, degradation, and dynamic-response elements; while widely used, it compresses 

complex phenomena into a single score. Earlier studies have cautioned that such indices can mask 

component-level deterioration, and that gains in signal quality may not immediately manifest as 

index changes if weighting schemes emphasize slow-moving variables (Shao et al., 2021). That our 

results nonetheless show a clear BHI uplift strengthens the argument that AI benefits permeate 

multiple sub-indicators simultaneously. 

Translating statistical findings into asset-management practice entails identifying controllable levers 

and threshold targets. The present evidence points to three: (a) maintain sensor accuracy near or 

above mid-90%, via periodic calibration and drift checks; (b) sustain AI detection precision in the 

mid-90s or better, through rigorous labeling, periodic model refresh, and domain shift monitoring; and 

(c) hold end-to-end latency near 200 ms, by optimizing edge preprocessing and network pathways 

(Yang et al., 2020). Earlier implementation guides and case studies have underscored similar 

thresholds, noting that benefits compound when levers are improved jointly rather than in isolation. 

Our regression slopes provide planning heuristics: a percentage-point gain in AI precision or 

accuracy yielded sub-unit BHI improvements that become operationally meaningful when scaled 

across networks of assets, while a 10-ms latency reduction delivered measurable, albeit smaller, BHI 

gains. For owners and agencies, these numbers motivate investment in calibration infrastructure, 

resilient communications (e.g., redundant backhaul, prioritization policies), and MLOps capability 

(data versioning, performance dashboards, and rollback plans). Contracting and policy frameworks 

can embed service-level agreements keyed to these levers—e.g., minimum uptime and maximum 

latency, periodic third-party calibration audits, and model-performance acceptance tests—to 

ensure that vendors deliver sustained condition benefits rather than one-time deployments. In 

inspection planning, AI outputs with quantified precision support risk-based scheduling: assets with 

stabilized high BHI and low residual uncertainties can extend inspection intervals within regulatory 

bounds, whereas sites showing degraded precision or rising latency might warrant targeted manual 

checks (Kurian & Liyanapathirana, 2019). These operational pathways echo earlier 

recommendations that SHM’s value is realized not at sensor installation but through disciplined life-

cycle management of data quality and inference. 

Although the study avoids prescriptive forecasts, several research avenues arise from the pattern of 

results and their relationship to earlier literature. First, disentangling detection quality from feature 

choice would benefit from ablation studies that test wavelet/entropy, Hankel/SVD, and learning-

based keypoint pipelines under identical field conditions; prior bench experiments have shown 

differential sensitivity to stiffness loss, but field-scale comparative evidence remains sparse (Ibrahim 

et al., 2019). Second, environmental normalization—temperature–frequency compensation and 

baseline stratification—likely moderates AI benefits, especially on concrete bridges; multi-seasonal 

datasets are needed to quantify how much of the BHI uplift persists after aggressive environment 

modeling (Zhuang et al., 2022). Third, causal identification would be strengthened by stepped-

wedge or matched-pair designs in which the same assets transition from conventional to AI-

enhanced monitoring, with pre/post comparisons controlling for maintenance events. Fourth, the 

integration of vision and GNSS for absolute displacement anchoring, well documented in prior 

demonstrations, could be systematically paired with the kind of accuracy and latency metrics used 

here to expose trade-offs between tracking robustness and communication budgets (Shi et al., 

2022). Finally, economic analysis should accompany technical metrics: earlier cost–benefit studies 

argue that SHM value accrues through avoided closures and targeted maintenance; connecting 

our effect sizes to expected failure probabilities and intervention costs would clarify return on 

investment at the network scale. Collectively, these directions, many of which echo calls in the prior 

SHM literature, would refine the external validity of the present findings, ensure portability across 

structural types and climates, and support policy formation that ties funding to measurable, 

sustained improvements in condition indices (Khoa et al., 2018). 
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CONCLUSION 

This quantitative investigation demonstrated that integrating artificial intelligence (AI) with Internet 

of Things (IoT)–based structural health monitoring (SHM) meaningfully improves the assessment and 

management of in-service bridges. Through systematic evaluation of 60 assets across multiple 

structural types, the study established that bridges equipped with AI-enhanced systems achieved 

significantly higher Bridge Health Index (BHI) scores than those using conventional IoT-only 

configurations, even after controlling for core data quality indicators such as sensor accuracy and 

transmission latency. Statistical modeling confirmed that AI detection precision, sensing fidelity, and 

low end-to-end latency act as independent yet complementary predictors of improved condition 

scores, explaining approximately 60% of the variance in BHI. These results extend and substantiate 

prior laboratory and pilot-scale evidence showing that accurate calibration, robust telemetry, and 

machine-learning–based anomaly detection yield more stable and informative SHM outputs (Dong 

& Catbas, 2020; Bassir et al., 2022). Notably, the observed advantages persisted across a 

heterogeneous sample of bridges and were not fully attributable to hardware or network superiority 

alone, underscoring AI’s role as a transformative analytics layer. The study also illuminated material-

specific dynamics: steel bridges benefited most, likely due to clearer modal responses and less 

thermal confounding, while concrete spans exhibited greater performance variability consistent with 

earlier findings about environmental sensitivity in vibration-based monitoring. Methodologically, the 

use of rigorous assumption testing, effect sizes, and multi-variable regression strengthened internal 

validity and aligned with best practices in contemporary SHM research. Practically, the work 

highlights actionable thresholds for infrastructure owners—maintaining sensor accuracy above 95%, 

AI classification precision in the mid-90s, and latency below roughly 250 ms—as performance 

benchmarks linked to better condition outcomes. Although observational design limits strict causal 

inference, the findings complement prior controlled demonstrations and support the strategic 

adoption of AI-driven SHM for safer, more cost-efficient, and data-driven bridge asset management. 

RECOMMENDATION 

The findings of this study suggest several clear pathways for improving the practice of structural 

health monitoring (SHM) through AI and IoT integration, particularly for critical bridge assets. 

Agencies and infrastructure owners should prioritize the adoption of AI-enabled SHM systems for long-

span, heavily trafficked, or strategically significant bridges. The observed ~7-point uplift in Bridge 

Health Index (BHI) demonstrates the tangible value of AI in anomaly detection, data denoising, and 

multi-sensor integration, providing a strong justification for investment. To maximize the benefits of 

such systems, agencies should enforce strict calibration and accuracy benchmarks, maintaining 

sensor reliability at or above 95% through periodic recalibration with reference transducers and third-

party audits. Equally important is the reduction of data transmission latency: networks must sustain 

end-to-end delays below 200–250 ms, which can be achieved through edge computing, redundant 

backhaul, and prioritized communication channels. These measures collectively ensure that the 

fidelity of SHM data remains high and that monitoring operates close to real time. 

Beyond hardware and network optimization, the results emphasize the importance of continuous AI 

model management. AI models are susceptible to environmental drift and evolving structural 

conditions, making disciplined machine learning operations (MLOps) essential. Transportation 

agencies should establish retraining pipelines, seasonal validation routines, and precision monitoring 

dashboards to sustain AI performance over time. Additionally, system customization is critical: bridge 

material and typology influence both condition outcomes and monitoring effectiveness. For 

instance, steel bridges may benefit from vision-based or GNSS-aided displacement tracking, 

whereas concrete bridges may require denser sensor arrays or more sophisticated temperature–

frequency normalization to offset environmental variability. Integrating SHM outputs into risk-based 

inspection planning provides another operational advantage. By aligning inspection intervals with 

AI-derived condition metrics, agencies can extend review cycles for stable, high-performing assets 

while focusing resources on sites with deteriorating precision or rising latency. This hybrid oversight 

model enhances both efficiency and safety assurance, positioning AI as a complementary partner 

to human inspectors. For long-term sustainability, SHM programs should be embedded within 

economic and policy frameworks. Quantifying the cost–benefit relationship between BHI 

improvements and avoided maintenance or downtime will provide a financial rationale for large-

scale adoption. Policymakers can leverage these insights to develop funding structures and service-

level agreements tied to measurable technical outcomes such as latency thresholds, calibration 
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performance, and AI precision levels. At the same time, future research should advance 

methodological rigor by adopting pre/post deployment designs on the same assets, expanding 

observation windows across multiple seasons, and conducting controlled comparisons of AI feature 

families to determine context-specific best practices. Environmental normalization and ablation 

studies can further disentangle the contributions of sensor fidelity, anomaly detection precision, and 

latency optimization. By integrating technical benchmarks with economic evaluation and 

advancing robust experimental designs, both practitioners and scholars can strengthen the case for 

AI-supported SHM as a cornerstone of resilient, data-driven infrastructure management. 
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