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ABSTRACT 

Increasing competition among developed countries makes it increasingly pressing for the 

garment industry in developing economies such as Bangladesh to produce high-quality, 

defect-free products at competitive prices in order to remain globally viable. As one of the 

largest contributors to Bangladesh’s economy, the garment sector faces constant pressure 

to balance quality with efficiency while responding to fluctuating international demand. 

Within this context, the present study investigates the effectiveness of the Six Sigma DMAIC 

(Define, Measure, Analyze, Improve, Control) methodology in optimizing the cutting process 

at Epyllion Group, a leading garment manufacturing company in Bangladesh. The choice 

of focusing on the cutting process was strategic, as this stage plays a critical role in 

determining dimensional accuracy, fabric utilization, and overall product quality. Even small 

errors in this stage can cascade into large-scale defects, increasing rework rates and 

operational costs.The research systematically identified inefficiencies that contributed to 

frequent production defects and heightened expenses. Among the most significant issues 

were fabric misalignment, which caused irregular cuts and waste; bundle mislabeling, which 

created confusion and delayed workflows; and inconsistent fabric tension, which 

compromised uniformity in cut panels. These problems were compounded by inadequate 

operator skills and limited preventive maintenance practices. To address these challenges, 

the study employed a structured data collection framework supplemented by analytical 

tools such as Pareto analysis and cause-and-effect diagrams. These techniques allowed the 

research team to isolate the root causes of the majority of defects and to design targeted 

solutions. The interventions included operator training programs aimed at enhancing 

technical precision, machine calibration and maintenance schedules to ensure equipment 

reliability, the installation of automated tension controllers to standardize material handling, 

and the introduction of standardized operating procedures to reduce process variation.  

The impact of these measures was significant and measurable. Results following 

implementation revealed a 61.5% reduction in defect rates, which directly improved product 

quality and reduced waste. Machine downtime was cut by 66.7%, reflecting the success of 

preventive maintenance and calibration measures. Similarly, the product rework rate 

dropped by 55.6%, which not only lowered costs but also improved throughput and delivery 

reliability. Additional improvements were observed in measurement accuracy, which 

increased by 25%, and operator training scores, which rose by 38.5%, indicating that human 

capital development played a key role in sustaining process improvements. These results 

demonstrate the combined value of technological upgrades and workforce 

empowerment, showing that quality improvements in garment manufacturing require both 

structural and behavioral change. 
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INTRODUCTION 

The global textile and garment industry provides international trade with all-important leverage and 

significantly contributes to development, employment, and technological advancement (Patel & 

Patel, 2021). These rising consumer expectations for high-quality and price-competitive garments put 

immense pressure on manufacturers to improve production efficiency with reduced defects (Saad, 

2020). In emerging economies such as Bangladesh, with the national economy firmly depending on 

the garment sector, these challenges assume special significance (Keane & Velde, 2019). There are 

systematic process optimization mechanisms that nowadays companies should incorporate so that 

productivity and quality remain high in their outputs in the rapidly changing market. They may 

comprise methodologies such as lean manufacturing, Total Quality Management (TQM), and Six 

Sigma. All these have become key in improving operational efficiency and reducing waste in mass 

production environments (Taylor, 2018). But Six Sigma has remained largely untested in the textiles 

and garment manufacturing sector, even though it has traveled into industries such as healthcare, 

automotive, electronics, and so on (Sharma & Singh, 2023). 

Epyllion Group, a leading garment manufacturer in Bangladesh, is one of the companies that 

addresses production process optimization for compliance with international quality standards. 

However, despite its strong market presence, the company deals with the continuous problems of 

high levels of defects, poor workflows, and limitations in quality control (Fouji & Hoque, 2020). 

Inefficiency and production defects incur extra costs and, by implication, hurt the brand reputation 

and customer satisfaction. The Six Sigma problem-solving approach, with an emphasis on data-

driven decision-making and the removal of defects, is potentially a panacea. But actual application 

of Six Sigma in the textile industry requires efficiently evaluating the effectiveness of Six Sigma in 

addressing industry-specific problems such as variation in fabric quality, labor-intensive processes, 

and supply chain variation (Sarker, 2024). 

This study aims to examine the effect of Six Sigma on defect reduction and production efficiency in 

the garment industry. The potential benefits and limitations of Six Sigma have been investigated 

alongside its implementation at the Epyllion Group. This study postulates that the implementation of 

Six Sigma will result in a tangible reduction of defects and improvement in production efficiency. 

These findings will provide significant insights to industry practitioners as well as add to the body of 

knowledge concerning process optimization in textile manufacturing. 

LITERATURE REVIEW 

There is a lot of research on Six Sigma in manufacturing industries, with abundant literature affirming 

its capacity to improve quality control and reduce defects. Motorola pioneered this project in the 

1980s. Six Sigma represents a data-driven approach to eliminate variations in a process for better 

operational efficiency (Ajmera & Umarani, 2017). Applications in various industries, from healthcare 

to aerospace and automotive manufacturing, have confronted the need for process 

standardization and quality enhancement (Kurnia et al, 2021). Thus, it is relatively new to the textiles 

and apparel industry and embarks on certain challenges. Since garment making is labor intensive, 

and raw materials vary, the application of Six Sigma needs to address such modifications industry-

wise to guarantee implementation success. 

Some researchers have dealt with the Lean and Six Sigma methodologies in textile productions, 

proving their capability to enhance production. According to (Kurnia et al, 2021), companies 

implementing Lean Six Sigma in textile industries report more tangible waste and defect rate 

reductions. (Saad, 2024) further reiterated the works of Six Sigma and data mining in production 

process optimization, insisting that statistics and process control weigh heavily in defect prevention. 

However, such literature is very scarce regarding large-scale garment manufacturers; more 

empirical work is needed for findings to be validated in real-time textile production. 

With an export-oriented orientation for major international brands, an interesting case study 

describing the Six Sigma impact on the garment sector could be the Epyllion Group. The company 

is primarily challenged by very high defect rates, which hinder productivity and thus profitability. This 

research made an attempt to address the key propositions: 

Q1: How does a Six Sigma approach affect defect reduction in garment manufacturing? 

Q2: What are the primary operational challenges facing the implementation of Six Sigma within the 

textile industry? 

Q3: What other measurable improvements in production efficiency can be ascertained post-Six 

Sigma implementation?  
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The other side of the argument in this study is that the implementation of Six Sigma will produce the 

following outcomes: 

- A significant decrease in defect rates. 

- Standardization of processes, therefore improving production efficiency. 

- Improvement of overall quality control and customer satisfaction. 

By addressing these research questions and subsequently testing the hypothesis in the context of 

Epyllion Group, this study intends to serve the advancement of the literature concerning Six Sigma 

applications in textile and garment manufacturing. These results would not only provide working 

recommendations for industry leaders but would permit some fine-tuning of Six Sigma methodologies 

for the specific challenges of this sector. 

METHOD 

The research investigates the optimization of the cutting system in garment manufacturing through 

the structured application of the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) 

methodology. This methodological choice is particularly appropriate for addressing systematic 

inefficiencies because DMAIC provides a step-by-step framework for identifying, quantifying, and 

eliminating sources of variation and defects. 

The process began with the scoping of the company’s operations, involving close engagement with 

management and frontline stakeholders to build an accurate understanding of the production 

environment. This scoping phase ensured that the project objectives were aligned with the 

organization’s strategic quality targets and that the voices of operators, supervisors, and quality 

controllers were integrated into the problem definition. The collaborative approach was important 

for recognizing both the technical and human factors that contribute to inefficiencies in the cutting 

system.  

During the Define phase, the project team identified the core problem areas by mapping the existing 

cutting process and highlighting performance gaps. Stakeholder input and historical production 

records were used to specify the Critical to Quality (CTQ) characteristics, such as dimensional 

accuracy, proper alignment of fabric layers, and consistency in cut size. Establishing CTQs was 

essential to link customer expectations with process parameters and to develop measurable 

benchmarks against which improvements could later be evaluated. 

The Measure phase focused on the systematic collection of data to confirm the existence of 

performance issues. Quantitative data were classified into measurable categories (e.g., defect 

counts, error percentages) while qualitative insights (e.g., operator observations) were used to 

contextualize these findings. Statistical process control (SPC) tools and preliminary Pareto charts were 

employed to assess the extent and distribution of errors across different shifts and workload 

conditions. These tools provided an evidence base to identify potential bottlenecks and recurring 

failure modes. 

In the Analyze phase, root cause identification was prioritized through structured techniques such as 

Pareto analysis and cause-and-effect (fishbone) diagrams. These tools allowed the team to isolate 

the dominant factors contributing to quality failures, including mismatched fabric piles, machine 

calibration inconsistencies, and insufficient operator training. By distinguishing between primary and 

secondary causes, the analysis stage provided actionable insights while avoiding superficial 

problem-solving. 

The Improve phase consisted of developing and testing targeted solutions. Depending on feasibility, 

some interventions were immediate, such as machine recalibration and adjustments to cutting 

protocols, while others required a more structured rollout, such as operator retraining and preventive 

maintenance schedules. A pilot testing approach was used to validate the impact of each 

intervention before scaling it across the production line. Figure 1 illustrates the structured cycle of 

improvements evaluated during this phase. 

Finally, the Control phase ensured the long-term sustainability of improvements. Control charts and 

real-time monitoring systems were introduced to track process stability and maintain error reduction. 

Standard operating procedures (SOPs) were updated to reflect new practices, while continuous 

auditing mechanisms were instituted to safeguard against process drift. Lessons learned were 

documented and shared across departments to encourage organizational learning and foster a 

culture of continuous improvement. By following this systematic methodology, the study ensured that 

Six Sigma was not only applied as a defect-reduction tool but also as a holistic quality management 

strategy.
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FINDINGS 

To optimize the cutting process in the Epyllion Group, a project was initiated and completed using 

the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) methodologies. Such a 

methodology emphasizes the identification of inefficiencies therein: the structural data-driven 

Figure 1: Research methodology 
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approach with fewer errors and higher standards. To ensure that all the information collected was 

relevant and credible, data was collected through the company itself, supplemented by leveraging 

historical production records and finding relevant industrial reports. Besides, three management 

personnel with one operator appointed, which formed an insightful discussion about the cutting 

process, helping us to relate to root causes affecting our standards: their constructive input has been 

important in pointing out our major weaknesses that require specific improvement actions. 

Define phase 

The define phase establishes a structural approach to improve the cutting process in the Epyllion 

Group. It detects the efficiency of the production and the main quality that affects the rate of error 

directly. Critical to Quality (CTQ) analysis plays a basic role at this stage.  The reason is that it helps to 

determine the parameters of the process - the size of the panel, the alignment of the fabric, the 

reduction of the error, and the accuracy of the cut. These factors are related to direct operational 

inefficiency and ensuring the continuity of the product. 

 
Figure 2 : Critical To Quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 2, the CTQ requirements arise from the common defects identified in the cutting process, 

such as dimensional mistakes, disorganization of fabric layers, and irregular cutting edges. Applying 

CTQ allows setting the benchmark of measurable functioning. Automatic tension controls the fabric 

transfer and reduces the waste of the ingredients by 5%. Regular quality tests and operator training 

programs have been shown to reduce the defects by humans up to 55%, to improve the process 

continuity. In addition, the sharpness of the blades and the digital cutting machines shows an 

impairment of 40-50% in achieving the uniformity that is optimized. By integrating the CTQ metrics 
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into the define phase, this study identifies the root cause of inefficiency and confirms a data-driven 

method to prioritize the improvement. 

Measure Phase 

By so much cross-hatching and matrix analysis, data was collected and quantified, to help 

understand what errors are associated with the cutting process in the Epyllion group. Many of these, 

for example, like the control chart and a binomial process capacity, were used simultaneously to 

find out where and for what the issues are. 

Table 1 mentioned that over a 30-day data analysis, the defect rates ranged between 0.001 and 

0.017. In fact, on several of its occasions, such as the 3rd day, the 5th day, and even the 19th day, 

the highest number of errors occurring on a single day was 13. Days that usually have a bigger load 

than the rest, operator error, and machine malfunction were among the conditions in which these 

days exhibited more evidence of problems. For the least number of errors, just one was reported to 

have occurred on the 12th day. Table 1 presents the measurements.  

 
Table 1: Number of defects from 30 days with a sample size of 750 

 

Sample no 

(Day)  defects  

Conformance 

percentage 

Sample no 

(Day)  defects  

Conformance 

percentage 

1 5 0.007 16 2 0.003 

2 4 0.005 17 6 0.008 

3 13 0.017 18 3 0.004 

4 3 0.004 19 13 0.017 

5 13 0.017 20 7 0.009 

6 5 0.007 21 6 0.008 

7 5 0.007 22 6 0.008 

8 7 0.009 23 6 0.008 

9 3 0.004 24 3 0.004 

10 5 0.007 25 5 0.007 

11 8 0.011 26 2 0.003 

12 1 0.001 27 8 0.011 

13 4 0.005 28 6 0.008 

14 4 0.005 29 9 0.012 

15 4 0.005 30 3 0.004 

 

Process Capability process  

Figure 3 shows the tendency of defects using the P Chart, Binomial plot, and Histogram. The P chart 

shows a spike in the error in 3, 5, and 19 days, the control limit exceeds 0.017 (1.7%), where the 

minimum error rate of 0.001 (0.1%) indicates advanced control over the 12th day. The binomial plot 

confirms the distribution of unstable flaws with unexpected fluctuations (Saad, 2024). The Histogram 

shows the rate of error between 0.004 (0.4%) and 0.009 (0.9%), but the extreme values, such as 0.017 

(1.7%) indicate the inconsistency of the process. These charts highlight the need for redesign, 

operator training, and workload balance to stabilize the cutting process. his analysis shows that the 

rate of error on the high-production day increases, which means that heavy work pressure is a major 

cause of error. Mismatched piles and fabric misalignment show that the management of the 

material needs to be improved. The number of errors can mean sudden growth that the machines 

have not been set up properly, or cutting tools are turning. These results will help in the next phase, 

where need to focus on employee training, a regular machine maintenance schedule, and 

smoothing the cutting process and reducing errors to reduce the defects. 
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Figure 3 : Process capability report 

 

Analyze phase 

The analysis phase focuses on identifying and confirming the root causes of errors using data from 

the Measuring episode. Data was collected directly within the company and through a review of 

older production records and industrial reports to ascertain validity and relevance. Also engaged 

were three management personnel and one operator possessing firsthand information of the cutting 

process, which aided in exposing the primary issues affecting our standards. Applied Pareto analysis, 

error frequency distribution, and the primary factory identification methods to discern the cutting 

process's influences of the largest significance.  

Pareto Analysis  

The Pareto Chart focuses on the few critical defects that influence the bulk of quality issues based 

on the 80/20 principle. The three major errors of pile matching, numbers and bundle mislabeling, and 

tension relaxation, which are reported in Table 2, account for a significant share of all errors with 26% 

and 52% respectively. The errors sum to over 50% concerning total quality complaints, hence paying 

attention to these would yield considerable improvement. Less prominent defects such as Boeing 

(56%), Narrow Goods (61%), and Bias are present but to a certain lesser extent than the prime three. 

 

Table 1: Number of defects 

 
Defects Num. of 

abnormalities 

Frequency 

(Percentage) 

Defects Num. of 

abnormalities 

Frequency 

(Percentage) 

Matching piles 120 26% Leaning 21 80% 

Number and 

bundling 

88 45% Skew  21 85% 

Tension loose 32 52% Rugged cut 20 89% 

Bowing 23 56% Miss cut  17 92% 

Narrow goods 23 61% Miss accurate 

dimension  

13 95% 

Bias 23 66% Fabric way 11 98% 

Notch mark 22 71% Alignment 11 100% 

Measurement 21 76% Leaning 21 80% 
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Pareto analysis was used to detect the main cause of the error in the cutting process. This method 

follows the 80/20 rule, which means that some of the main problems are mostly caused by error. The 

analysis shows that three main defects - matching piles (26%), numbers and bundling mistakes (45%), 

and tension irregularities (52%) - are responsible for 71% of the total error. Other errors, such as low 

(56%) and narrow products (61%), also had an effect, but less frequently. By focusing on the top three 

subjects, the company can reduce the defects more effectively instead of spreading resources 

across all problems. The extra value of the parrot analysis is that it helps give priority to solutions, 

saving time and cost. In the next phase, these results will indicate improvements such as machine 

calibration, a color-coded tagging system, and defects to reduce the defects and improve skills. 

 
Figure 4: Pareto Analysis 

 

Cause and Effect Diagram  

In Figure 5, the fishbone diagram, popularly known as the cause-and-effect diagram, can be a 

potent tool to track down defects in the garment cutting process. It catalogues the potential causes 

into head categories: materials, methods, machines, and people, concerning which the diagram 

helps identify almost every avenue that results in cutting defects-in-ease, wastage of fabric, or 

misalignment. The relationship so visualized pinpoints the isolated root causes, poor fabric quality, 

training inadequacies, or machine malfunctioning, resulting from corrective action directed toward 

improvement in process accuracy, reduced defects, and improved total production efficiency in 

the garment sector. 
Figure 5. Cause-and-effect diagram 
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By considering the Cause-and-Effect Diagram, it is identified the main reasons that contribute to the 

cutting process. This analysis has helped to divide the problem into four main cases: staff, elements, 

procedures, and measurements, as presented in table 3. The image shows that low operator skills, 

poor material management, wrong machine settings, and incorrect measurement are the main 

causes of error. The additional value of this method is that it only helps find the root causes instead 

of fixing surface problems. By understanding these factors, target solutions such as operator training, 

strict quality control, and better machine calibration can be applied. In the next phase, these results 

will indicate the effort to reduce the error and make the cutting process more stable and efficient. 

 
Table 3: Main causes of the problem 

 

Main causes Priority Sub causes Improvement 

Personnel High Skill level, handling, cutting, 

performance, and 

documentation process 

Improvement of accuracy 

measurements 

Material Medium Bias, Defects, and quality Stricter quality control 

implementation methods 

Method Medium Quality tools, Six Sigma, 

research, monitoring 

Standardization of processes and 

integration of advanced quality 

control tools 

Measurement High Defect, Error tracking, 

Dimensional skills, measuring 

tape 

Enhancement of calibration of 

measuring tools and training on 

measurement techniques 

 

Improve Phase 

It testified to the improvement phase whereby action was taken to applying solutions for root causes 

which had been identified during the analysis. Cutting-process-in-this-study errors, such as matched 

piles, defective numbering-and-bundling, and tension-loose lead to the causes of such 

inefficiencies. To alleviate these defects and improve the cutting process in the Epyllion group, a 

structural improvement strategy was created, and operator training, machine maintenance, and 

process standardization were integrated. To solve the combined pile defects, a rearrangement has 

applied the protocol, which confirms the location of the specific fabric before cutting.  

 
Table 4: Kaizen continuous improvement 

 
Issue  Possible 

Solution 

Expected 

Impact 

Ease of 

Implementation (1 

Hard - 10 Easy) 

Cost 

Benefits (1 

Low - 10 

High) 

Rank 

(Effect) 

Responsible 

Personnel 

Cutting Process Create exact 

setting  

Reduce 

variation 

4 8 32 Supervisor 1 

Employee 

Engagement 

Implement 

customized 

training 

Improve 

quality 

2 9 18 Supervisor 1 & 3 

Misalignment 

Realign 

Adjust 

component 

positioning 

Improve 

process 

control 

7 7 49 Supervisor 2 

Machine Use Assign 

Machines and 

Operators to 

One Specific 

Increase 

productivity 

6 4 24 Supervisor 2 & 3 

Measurement Set up high 

precision 

Improve 

reliability 

10 7 70 Supervisor 3 

Tension Loose To cut down 

on risk factor 

Improve 

safety 

6 6 36 Supervisor 1 

 

Operators were trained in pile handling strategies, which reduced the possibility of confusion. 

Similarly, to reduce the numbers and bundling defects, a color-coded tagging system, which 

operates more efficiently to distinguish the fabric departments and reduces labeling and company 
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errors. To solve the problems of tension loose, the automatic fabric tension controller is installed to 

maintain compatible material throughout the cutting process. In addition, a regular calibration and 

maintenance schedule was implemented so that the cutting tools could be sharp and precise. 

A training program is provided with 15 cutting operators and 3 supervisors focusing on the error 

resistance strategy, proper machine calibration, and quality control checkpoint. The training with 

weekly assessment to measure education and improve practical skills as shown in table 4. 

After 3 months, the process was evaluated, 

Fabric Pile Handling 

➤ What Did: 

Fabric pile handling operations were retrained. This was aided by a clearly defined protocol of 

alignment for the entire batch of fabric. There was a color-coding program of fabric layers, bundles, 

and sizes that helped prevent pile-mismatching and bundling errors based on labeling. 

Advantages: This has resolved the defects regarding pile-matching (26%) and bundling errors (45%), 

according to Pareto analysis. 

Automated Tension Controller 

➤ What Did: 

Installed an automatic tension on the cloth, removing all the changes of tension when performing 

material cut-off operations. 

➤ Why It Matters: 

This has abolished the flaws owed to tension variability, which composed 52% of tension defects, and 

assured equal size cut without stretch or skew. 

Machine Calibration & Maintenance Schedule 

➤ What Did: 

There was a preventive maintenance plan in place each month. Operators were taking machine 

settings and blade conditions to ensure accuracy. 

➤ Why It Matters: 

This reduced cut size variation and downtime on machines by 66.7%. 

Organized Operator Training with Weekly Test 

➤ What Did: 

Trained 15 operators in measurement techniques, machine operation, and quality check points, and 

supervised three supervisors. Bi-weekly testing improved knowledge and skill tracking improvement. 

➤ Why It Matters: 

Average training scores increased by 38.5%, ensuring better process control and fewer human errors. 

 
Table 5: Measured Improvement 

 
Metric Baseline Value Post-Implementation Value Improvement (%) 

Defect Rate 26% 10% 61.50% 

Employee Training Score 65% 90% 38.50% 

Measurement Accuracy 76% 95% 25% 

Process Efficiency 70% 88% 25.70% 

Machine Downtime 15% 5% 66.70% 

Product Rework Rate 18% 8% 55.60% 

 

The measures of this improvement have combined with the perfection of cutting, reducing the waste 

of the material and improving the overall production skills so that the fabric alignment and the 

accuracy of the cut ensure the accuracy of the cut. 

Control Phase 

The control phase ensures the durability of the cutting process and prevents the defects from 

repeating. Special attention was paid on the 3rd, 5th, and 19th days. It recorded the maximum error 

rate due to increased workload, operator fatigue, and machine calibration inconsistencies. To solve 

these problems, a work stress balance strategy was introduced. To avoid operator strain, the 

production was distributed more equally across the shift. A real-time quality inspection system was 

also applied, and caretakers enable and enable the cutting defects immediately to detect and 

correct. 
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In those highly defective days, 15 operators and 3 supervisors managed various steps in the cutting 

process. To strengthen the control, an additional standard control inspector was appointed to focus 

on fabric alliance, numbering, and machine settings, which allow the initial detection of defects to 

prevent the final output from being affected. 

Statistical Process Control 

➤ What You Did: 

P-charts monitored daily defect rates, with peaks on Days 3, 5, and 19 closely examined. 

➤ Why It Is Important: 

Through real-time monitoring, SPC allowed you to see the process and identify irregularities quickly 

so that you could take immediate action. 

 
Figure: 5 Process capability report for defects in control phase 

Standard Operating Procedure 

➤ What You Did: 

SOPs were developed on the major tasks—fabric layout, tagging, and machine calibration.  

➤ Why It Matters: 

These SOPs served to standardize operator behaviors, reducing variation and thereby allowing the 

process to be repeated or scaled.  

Poka-Yoke 

➤ What Did: 

 Implement sensor triggers and optical inspection to prevent cuts misalignments or fabric tension 

inconsistencies in the final product.  

➤ Why It Matters:  

Poka-Yoke allowed for the detection of errors early on, so rework efforts (55.6% reduction) were 

significantly minimized. 

Visual Management & Real-Time Feedback 

➤ What Did: 

Implementation of the dashboard tracking defect rates and machine status with facility for 

supervisors to change operational parameters in real-time. 

➤ Why It Matters: 

Visibility generated a sense of belonging among employees and 88% operational efficiency was 

guaranteed. 
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Regular practices and audits 

➤ What did:  

Bimonthly refresher courses kept operator knowledge fresh and were followed by purposeful weekly 

auditing to maintain new systems' accountability.  

➤ Why is it important:  

These add-ons assisted with ensuring stayed at a post-training high score of 90 and remained 

consistent with having operators adhere to established new standards. 

Several control systems were established to maintain improvement. Standard operating methods 

were created for fabric handling, numbering, and machine calibration to ensure consistency. A 

preventive maintenance plan was introduced to inspect the machine, and the mistakes and 

inconsistencies were dealt with. A weekly quality audit was applied to monitor the rate of error and 

strengthen the loyalty of new processes. The ongoing training sessions are determined every two 

months to maintain the efficiency of the operator, strengthen the best practice, and update staff on 

process changes. 

DISCUSSION 

The findings of this meta-analysis affirm that Management Information Systems (MIS) significantly The 

findings from the Six Sigma DMAIC implementation in the garment cutting process highlight the 

transformative potential of structured quality improvement tools in labor-intensive industries. The 

systematic approach undertaken revealed how identifying and prioritizing Critical to Quality (CTQ) 

parameters such as fabric alignment, dimensional accuracy, and cut consistency can provide a 

strong foundation for tackling recurring defects. By breaking down the production process into 

measurable components, the project demonstrated that operational inefficiencies are not random 

occurrences but rather patterned outcomes of controllable variables. This reinforces the notion that 

a data-driven approach is essential in environments where minor errors can translate into substantial 

rework costs and reduced customer satisfaction. The results indicate that defect reduction is 

achievable when root causes are explicitly identified and corrective actions are carefully aligned 

with operational goals. 

One of the most significant outcomes was the reduction of defects through targeted interventions 

such as operator training, machine calibration, and improved material handling protocols. The study 

showed that focusing on the top three sources of errors—pile mismatching, number and bundling 

errors, and fabric tension inconsistencies—was far more effective than dispersing resources across all 

identified problems. Concentrating on high-impact areas allowed measurable gains to be made 

with relatively modest investments in training and maintenance. This strategic prioritization is a critical 

insight, as it demonstrates that quality improvements can be scalable when organizations focus on 

key leverage points within the production system. In practice, this means that future applications of 

Six Sigma in garment manufacturing should prioritize interventions that offer maximum returns on 

quality and efficiency. 

The role of human factors in achieving process optimization also became evident through the 

intervention phases. The structured training programs, coupled with weekly assessments and 

supervisor oversight, not only improved operator skill levels but also created a culture of 

accountability and precision. Workers became more engaged in ensuring that machine calibration 

and fabric alignment were carried out properly, which resulted in a significant reduction in human 

error. The study illustrates that sustainable process improvement cannot be achieved through 

technology or process redesign alone; it requires the cultivation of a skilled and motivated workforce. 

The evidence suggests that building competencies at the operator level has a multiplier effect, as 

better-trained personnel also contribute to faster problem detection and improved teamwork on 

the shop floor. 

Equally important was the role of technology and systematic monitoring in reinforcing improvements. 

The introduction of automatic tension controllers, standardized operating procedures, and 

preventive maintenance schedules ensured that variations were minimized and that corrective 

measures became embedded into daily operations. The implementation of real-time dashboards 

and statistical process control techniques further allowed supervisors to monitor error rates 

continuously, preventing minor deviations from escalating into significant quality issues. These 

technological and procedural safeguards provide a framework for long-term stability and 

sustainability of the improvements achieved. The success of these control mechanisms demonstrates 
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that Six Sigma is not just a one-time project but an ongoing cycle of improvement where monitoring, 

learning, and adaptation remain central. 

Finally, the broader implications of this study lie in its ability to show how Six Sigma can be customized 

to the unique challenges of the garment industry. Unlike fully automated industries, garment 

manufacturing is characterized by variability in raw materials and high dependence on manual 

labor. The successful application of DMAIC in this context proves that quality management systems 

can be tailored to industries where human involvement is critical and material inconsistencies are 

common. The reduction in defect rates, downtime, and rework, coupled with measurable 

improvements in operator skills and production efficiency, provides evidence that Six Sigma can 

serve as a strategic enabler of competitiveness in global markets. By embedding a culture of 

continuous improvement, garment manufacturers can not only meet international quality standards 

but also position themselves for long-term sustainability and resilience in a highly competitive industry. 

RECOMMENDATION 

Since the project has had such impressive results, it should be institutionalized as a strategic quality 

tool for the entire garment production life cycle. The successful DMAIC application at Epyllion Group 

has confirmed that organized training, preventive maintenance, and real-time monitoring 

significantly reduce error rates and inefficiencies. Future initiatives should aim at extending the Six 

Sigma integration across the upstream and downstream activities, such as stitching and packaging, 

leading to an end-to-end lean quality framework. Frequent cross-department collaboration and 

review of KPIs would be the principal drivers for keeping the results achieved and stimulating 

continuous improvement 

CONCLUSION 

The successful application of the Six Sigma DMAIC methodology in this research considered the 

optimization of cutting processes in Epyllion Group, one of the largest garments manufacturers in 

Bangladesh. The tasks were systematically followed under Define, Measure, Analyze, Improve, and 

Control, identification of major inefficiencies in the cutting processes evident in pile mismatching, 

number mismatch, and fabric tension problems. By employing tools like Pareto analysis, control 

charts, and cause-and-effect diagrams, the defects and consequently the root causes of the 

defects were identified and the necessary improvement actions such as operator training, 

calibration of machines, and automatic tension controllers were implemented. These improvements 

were coupled with visual management tools and standardized operating procedures for 

guaranteed precision and reliability of operations daily. 

As an affirmation of the robustness of Six Sigma in what is exclaimable as a labor-intense and quality-

conscious environment, defect rates plummeted from 26 percent to 10 percent; machine downtime 

was curtailed by 66.7 percent, while product rework rates saw a reduction of 55.6 percent. At the 

same time, operator training scores and measurement accuracy improved significantly. The results 

not only supported the research hypothesis but also developed a scalable model for quality and 

process control for the garment industry. Portraits painted the picture of Six Sigma customized and 

carefully implemented to be a potential activator of operational excellence and defect reduction 

towards sustainable quality improvements in textile manufacturing systems. 
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