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ABSTRACT

This study develops and evaluates a real-time, data-driven framework for
predicting bridge load capacity by integrating Internet-of-Things (loT) sensor
streams with advanced machine learning. A multi-site dataset of ~200k five-
minute records from 48 bridges across temperate, tropical, and continental
climates was compiled, cleaned (k-NN imputation; IQR outlier filtering),
normalized, and time-synchronized. Models—Random Forest (RF), Gradient
Boosting (GBM), Support Vector Regression, and Deep Neural Networks—were
frained using blocked time-series cross-validation (80/20 split; five folds) and
benchmarked with MAE, RMSE, and R2RA2R2. Ensemble approaches
consistently outperformed single learners. RF achieved the best balance of
accuracy and stability (MAE = 12.4 KN; RMSE = 18.1 kN; R2RA2R2 = 0.958; fold SD
<2.1%), with an RF-GBM blend reaching R2RA2R2 = 0.962 and 11% lower residual
skewness. Incorporating environmental covariates (femperature, humidity) and
dynamic features (vibration, deflection rate) improved accuracy by ~10% over
structural-only baselines. Sensitivity and correlation analyses identified strain and
deflection as dominant predictors (strain rrr = 0.88; deflection rrr = 0.80), with
temperature exerting material-dependent moderating effects, particularly in
steel bridges. Real-time deployment tests demonstrated operational feasibility
with sub-2 s inference latency (RF 1.82 s average), >99% system uptime, and
superior accuracy under dynamic loading (RF MAPE = 3.6%). Sliding-window
retraining (7-day refresh) mitigated temporal drift and reduced error by ~6—-7%
relative to static models. Early-warning simulations showed high detection
reliability for load-exceedance events (RF true-positive rate 97.2% with low false
alarms). Findings establish that harmonized sensing plus ensemble learning yields
accurate, robust, and responsive estimates of bridge load capacity, advancing
structural health monitoring from periodic inspection toward continuous,
anticipatory asset management and providing a reproducible blueprint for
physics-aware, data-driven infrastructure decision support.
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INTRODUCTION
Bridge load capacity referred to the maximum amount of weight or live load that a bridge structure
could safely sustain without experiencing material failure or excessive deformation (Abdal et al,,
2023). Within the field of structural engineering, the quantification and prediction of load-bearing
capacity served as a central concern for infrastructure safety, resilience, and economic
sustainability. Traditional analytical models relied on deterministic calculations grounded in
mechanics of materials and structural dynamics (Shokravi et al., 2020); however, these approaches
exhibited limitations in addressing nonlinearity, environmental variability, and cumulative
deterioration under operational loads. Internationally, bridge failures in the United States, Italy, and
China had underscored the socioeconomic and human costs of inaccurate capacity assessments.
The emergence of machine learning (ML) provided a data-driven alternative that integrated real-
time sensor information with historical loading patterns to yield probabilistic predictions of structural
capacity. The field evolved under the paradigm of structural health monitoring (SHM), where
accelerometers, strain gauges, and fiber-optic sensors supplied continuous data streams for model
training and evaluation. Global research agencies and fransportation departments had invested
heavily in ML-driven monitoring systems to enhance predictive maintenance and risk-based asset
management (Abbas et al., 2021). Consequently, predictive modeling using ML techniques assumed
an increasingly significant role in infrastructure management worldwide, representing a shift from
reactive to anficipatory safety frameworks.
The concept of predictive modeling within bridge engineering denoted the process of learning
functional relationships between structural responses and influencing factors such as material
properties, span geometry, environmental conditions, and live load dynamics. Earlier predictive
frameworks had been grounded in regression-based or finite element analysis (FEA) methods that
assumed material homogeneity and idealized boundary conditions (Younas et al., 2023). Over the
past two decades, researchers increasingly adopted machine learning algorithms—particularly
Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), Decision Trees (DTs), and
Gradient Boosting Models (GBMs)—to model nonlinear and multivariate patterns in complex
structural systems. The integration of sensor-based real-fime data augmented the predictive
accuracy by capfuring in-situ dynamic responses such as vibration frequency, strain, and
temperature gradients (He et al., 2021). Comparative experiments indicated that ML-based models
consistently outperformed conventional analytical or empirical equations in predicting load-bearing
behavior under variable loads (Hai et al., 2023). For instance, ANN-based models achieved mean
prediction accuracies above 95% for concrete girder bridges using continuous strain and deflection
datasets. These findings demonstrated that ML could generalize across bridge types and
environmental contexts while maintaining computational efficiency. Globally, predictive modeling
had also supported policy decisions in asset prioritization for repair and retrofitting programs. As data
acquisition systems and cloud-based analytics matured, the predictive modeling paradigm shifted
toward continuous learning frameworks capable of updating model parameters in real fime (Doger
& Hatami, 2020). This evolution positioned predictive modeling as both a methodological innovation
and a practical necessity in modern bridge engineering.
Machine learning algorithms played a transformative role in quantifying the complex, nonlinear
dependencies among design parameters, material degradation, and load-bearing responses in
bridges. In confrast to physics-based models that relied on predefined constitutive laws, ML
algorithms such as Random Forests (RF) and Extreme Gradient Boosting (XGBoost) learned these
relationships directly from data (Leblouba et al., 2022). The predictive process involved data
preprocessing, feature extraction, model training, and validation using cross-validation or k-fold
resampling methods. Studies by Tang et al. (2021) and Issa and Alam (2019) demonstrated that
ensemble methods achieved superior generalization by aggregating predictions from multiple weak
learners, thereby reducing overfitting in structural datasets. Similarly, deep learning architectures—
notably Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)—were
employed for spatiotemporal prediction of bridge load capacity . These models leveraged temporal
patterns in vibration and stress signals to forecast evolving load resistance under changing
environmental and operational conditions. Researchers validated these approaches using
benchmark datasets collected from large-scale monitoring systems in China, Japan, and South
Korea. The combination of high-dimensional sensor data and advanced algorithms substantially
increased the fidelity of predictive modeling, enabling engineers to anficipate structural weakness
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before failure occurred. These quantitative advances established ML as an indispensable analytical

instrument in bridge engineering, capable of learning from diverse datasets that spanned materials,
geometries, and load typologies.

Figure 1: Predictive Modeling Workflow Framework
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The integration of real-time sensor data into predictive frameworks fundamentally fransformed the
accuracy and responsiveness of bridge load capacity estimation. Sensor networks utilizing strain
gauges, accelerometers, fiber Bragg gratings, and displacement transducers supplied continuous
measurements of structural responses to live loads and environmental fluctuations (Abdul, 2021;
D'Antino et al., 2022). Real-fime data streams allowed ML algorithms to capture transient events,
progressive fatigue, and abrupt stress redistributions that static models often ignored. For instance,
time-series modeling approaches such as Long Short-Term Memory (LSTM) networks captured
sequential dependencies in sensor data, allowing accurate short-term forecasting of load
fluctuations (Emmanuel et al., 2023; Rony, 2021). Data fusion techniques combining multfiple sensor
modalities further enhanced model robustness against noise and missing data. Field deployments in
the United States, China, and South Korea demonstrated that real-time predictive monitoring
reduced inspection intervals by up to 40% and provided actionable insights into structural integrity.
Cloud-based data acquisition platforms enabled continuous model retraining, adapting to material
degradation and environmental aging over time. Quantitative analyses confirmed that models
incorporating live data achieved up to 30% higher accuracy compared to those trained solely on
historical datasets (Danish & Zafor, 2022; Madhushan et al., 2023). Thus, the convergence of ML with
sensor technology marked a decisive advancement toward adapftive, self-learning bridge
monitoring systems that aligned with global standards of predictive infrastructure management.
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Figure 2: Quantifying Bridge Load Capacity Framework
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The quantitative orientation of predictive modeling research reflected a methodological
commitment to empirical validation and reproducibility in structural engineering. Studies
operationalized variables such as bridge age, traffic load intensity, and structural material as
predictors, while load-bearing capacity served as the dependent variable. Data were collected
through both field-based sensor networks and experimental laboratory setups, ensuring
comprehensive empirical coverage (Danish & Kamrul, 2022; Soleimani & Haijializadeh, 2022).
Researchers employed statistical sampling to partition data into training and validation sets, typically
following 70:30 or 80:20 splits (Hossen & Atfiqur, 2022; Trach et al., 2022). Advanced models such as
Support Vector Regression (SVR) and Extreme Gradient Boosting (XGB) demonstrated statistically
significant relationships between sensor-derived variables and observed capacity limits, with p-
values below 0.05 (Rabiul & Praveen, 2022; Wedel & Marx, 2022). Furthermore, multiple linear
regression was frequently used as a benchmark model against which ML performance
improvements were quantified. Quantitative evidence consistently revealed that machine learning
achieved superior accuracy, interpretability, and robustness compared to conventional regression
and finite element methods (Kamrul & Omar, 2022). The empirical consistency across multiple
datasets, algorithms, and regional case studies validated predictive modeling as a reproducible
quantitative framework for assessing bridge load capacity (Razia, 2022). This systematic integration
of machine learning and real-time sensor analytics thus represented a globally verified scientific
methodology grounded in measurable, repeatable, and statistically validated outcomes (Sadia,
2022).

The primary objective of this stfudy was to develop, evaluate, and validate predictive modeling
frameworks that could accurately estimate bridge load capacity using real-time sensor data
infegrated with advanced machine learning algorithms. The study aimed to establish a data-driven
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decision-support system capable of enhancing the safety, efficiency, and predictive reliability of
bridge performance monitoring. Specifically, the research sought to transform traditional inspection-
based methods into confinuous, automated, and intelligent monitoring systems by leveraging
Internet of Things (loT)-enabled sensors and adaptive learning models. The study’s quantitative focus
centered on correlating key structural health indicators—such as strain, vibration frequency,
deflection, and temperature—with dynamic load responses under varying environmental and
operational conditions. By constructing and comparing multiple predictive algorithms, including
Random Forest, Gradient Boosting, and Deep Neural Networks, the research aimed to identify the
most effective model architecture capable of maintaining high predictive accuracy and
computational efficiency across diverse bridge typologies and climatic zones. Furthermore, the study
aimed to evaluate the sensitivity of different sensor parameters and to quantify their influence on
load capacity prediction accuracy. This included analyzing how fluctuations in environmental
factors—such as temperature and humidity—modulated mechanical responses within steel,
concrete, and composite bridge materials. Another major objective was to assess the robustness
and adaptability of predictive models under real-time streaming conditions, simulating operational
environments to ensure low-latency inference and reliable performance during fransient load
events. The research also sought fo test model retraining strategies that could minimize temporal drift
and maintain consistency over tfime, thereby ensuring sustainable predictive validity. Ultimately, the
overarching objective of the study was to propose an integrated, machine learning-based
framework that could serve as a proactive early-warning system for bridge fatigue, deterioration,
and potential failure. By achieving this, the study confributed to advancing smart infrastructure
systems and promoting data-driven maintenance planning within modern structural health
monitoring paradigms.
LITERATURE REVIEW
The study of bridge load capacity prediction had evolved into a quantitatively rich and data-driven
field at the intersection of civil engineering, structural mechanics, and artificial intelligence.
Historically, load capacity evaluation relied on deterministic methods such as finite element analysis
(FEA) and limit-state design, which utilized static safety factors derived from material testing and
structural geometry (Zhu et al., 2023). While these methods offered theoretical clarity, their inability
to account for stochastic variations in live load, temperature, material degradation, and cumulative
fatigue limited predictive reliability. Consequently, the literature witnessed a methodological
transition toward probabilistic and data-driven modeling, in which machine learning (ML) algorithms
and real-time sensor data were utilized to quantify nonlinear relationships and temporal patterns
affecting bridge performance (Alogdianakis et al., 2022; Danish, 2023). In quantitative terms, ML-
based predictive models were validated through accuracy metrics such as the coefficient of
determination (R?), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE),
serving as standardized indicators of statistical fidelity. Studies across diverse regions—including North
America, Europe, and East Asiac—documented how models like Arfificial Neural Networks (ANNs),
Random Forests (RFs), and Gradient Boosted Trees (GBTs) improved the precision of load estimation
by 20-40% compared to analytical models. Parallel developments in structural health monitoring
(SHM) and Internet of Things (IoT)-based sensing facilitated continuous acquisition of vibration, strain,
and displacement data, further strengthening the empirical foundations of predictive modeling (Li
et al., 2021). This literature review section quantitatively synthesized the evolution of bridge load
prediction methods from traditional mechanics-based analysis toward intelligent predictive systems
grounded in machine learning and real-time sensing. It examined statistical evidence from prior
empirical studies, structured under themes including data acquisition, algorithmic performance
evaluation, sensor fusion, and uncertainty quantification. The aim of this section was to identify
measurable gaps in predictive accuracy, feature selection, and validation design that limited
generalization across bridge typologies. Each subsection was organized around specific quantitative
constructs—accuracy indices, sensitivity analyses, and correlation models—ensuring a systematic
understanding of the empirical underpinnings of bridge load capacity prediction.
Approaches in Bridge Engineering
Quantitative modeling in bridge engineering historically emerged from deterministic frameworks that
relied on the mechanical principles of elasticity and strength of materials to estimate load capacity.
Deterministic models such as the finite element analysis (FEA) and limit state design were
foundational in predicting structural responses under static and dynamic loads. These methods
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employed predefined relationships between stress, strain, and material properties, providing clear
physical interpretations but limited adaptability to uncertain real-world conditions (Moresi et al.,
2022). Early studies by Snyder (2019) demonstrated that while deterministic load rating methods
offered consistency, they often overestimated safety margins when confronted with material
degradation or variable fraffic intensities. To address this, researchers began integrating statistical
tools to analyze empirical data and calibrate deterministic parameters. Regression models became
prominent in estimating live load effects and material deterioration trends, Paul and Criado (2020),
who used long-term monitoring data to establish linear relationships between bridge deflections and
load magnitudes. More recent quantitative evaluations, such as those conducted by Rojas-S&nchez
et al. (2023), applied multiple regression and fime-series analysis to predict load-bearing
performance under fluctuating environmental conditions, improving predictive accuracy relative to
classical analytical models. Bayesian updating frameworks, as explored by Sengers et al. (2019),
provided a probabilistic refinement of deterministic outcomes by integrating prior knowledge with
observed measurements. Collectively, these developments indicated a steady evolution from purely
formula-based estimations toward data-enriched statistical inference, where empirical evidence
guided the continuous calibration of structural prediction models. Studies such as those by Billings et
al. (2021) reinforced that statistical modeling not only captured variability in material and load inputs
but also infroduced measurable confidence intervals around predictions, a dimension absent in
fraditional deterministic frameworks.

Figure 3: Evolution of Bridge Modeling Framework
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The shift foward probabilistic reliability analysis in bridge engineering represented a critical milestone
in quantitative modeling, emphasizing uncertainty quantification and risk-based design. Early
deterministic methods assumed fixed safety factors, but reliability-based models infroduced
probabilistic parameters to represent material strength, load variability, and environmental effects.
The reliability index (B), a stafistical indicator of safety probability, became a central metric for
evaluating bridge performance in both research and design codes such as Eurocode and AASHTO
LRFD. Studies by Danish(2023) and Muller et al. (2020) demonstrated how calibration of load and
resistance factors through reliability indices allowed more consistent safety targets across bridge
types and materials. Subsequent empirical studies expanded this framework, using large-scale
datasets from bridge inspections and weigh-in-motion (WIM) systems to estimate the distribution of
live loads and resistance capacities. Harrison et al., (2021) employed Monte Carlo simulations o
propagate input uncertainties and estimate the probability of failure under different loading
scenarios, Kraus et al. (2020) infroduced response surface methodologies to enhance computational
efficiency in reliability estimation. International efforts, including those by the Joint Committee on
Structural Safety (Eigenschenk et al., 2019; Arif Uz & Elmoon, 2023), standardized reliability-based
design formulations that linked structural resistance with operational risk management. In applied
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studies, Raes et al. (2020) validated reliability-based assessments using field data from reinforced
concrete bridges, confirming that probabilistic models could accurately predict degradation effects
and extend service life predictions. Research by Posadzki et al. (2020) further quantified how regionall
fraffic and climate variations influenced the stafistical reliability of bridges, thereby encouraging
localized reliability calibration. Through these cumulative studies, the field demonstrated that
probabilistic modeling offered quantifiable improvements in assessing safety and performance
reliability, tfransitioning the discipline from deterministic conservatism to stafistically opfimized
engineering design.
The infroduction of machine learning (ML) into bridge engineering marked a major transformation in
predictive modeling by enabling data-driven learning of complex structural behaviors without the
explicit need for predetermined analytical equations. Machine learning frameworks such as Artificial
Neural Networks (ANNs), Random Forests (RFs), and Support Vector Machines (SVMs) provided
computational means to model nonlinear dependencies among geometric, material, and
environmental variables influencing bridge load capacity. Studies by Rodriguez-Garcia et al.,
(2020)confirmed that ML algorithms achieved superior predictive accuracy when compared to
regression-based and FEA methods, primarily due to their ability fo capture higher-order interactions
and dynamic feedback patterns in real-time monitoring data. For instance, ANN-based models
predicted bridge deflection responses with an accuracy improvement of up to 25% relative to
traditional regression analysis. Similarly, Rao et al. (2020) compared ensemble learning algorithms
and found that boosting and bagging fechniques enhanced model generalization across varying
bridge typologies. The incorporation of sensor-derived data—such as strain, displacement, and
vibration measurements—further elevated the predictive precision of ML models, as evidenced in
studies by Nyberg et al. (2022), which showed that hybrid models integrating real-time sensing
achieved high correlation coefficients between observed and predicted capacities. Comparative
reviews by Stirman et al. (2019) synthesized findings from over fifty empirical studies, reporting mean
accuracy improvements ranging from 15% to 40% when ML models replaced analytical formulations.
Deep learning frameworks, including Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks, were later applied fo time-series monitoring data, offering superior
modeling of temporal dependencies in sftructural behavior. These advances quantitatively
demonstrated that ML-based predictive systems not only reduced error margins but also provided
consistent, scalable tools adaptable to diverse environmental and operational conditions across
bridge infrastructures.
As quantitative modeling in bridge engineering matured, hybrid frameworks combining staftistical,
probabilistic, and machine learning techniques began to dominate predictive research. The
integration of reliability-based analysis with ML-driven prediction allowed engineers to quantify both
predictive accuracy and safety confidence within unified systems.illustrated that combining
Bayesian updating with neural network prediction enabled real-time adjustment of model
parameters as new sensor data became available, thus refining load capacity estimations
dynamically. Comparative analyses conducted by Macke and Genari (2019) revealed that hybrid
ML-reliability models achieved up to 35% lower mean prediction errors compared to stand-alone
deterministic methods. Data-driven calibration further improved through the use of ensemble
averaging, where multiple algorithms generated consensus predictions with reduced variance.
Cross-disciplinary studies in China, South Korea, and the United States validated these hybrid
frameworks across concrete and steel bridges subjected to variable climate and fraffic conditions.
Quantitative assessments confirmed that the integration of real-time monitoring data with predictive
modeling frameworks enhanced sensitivity to early-stage deterioration, enabling accurate
estimation of load residual capacity and structural resilience. Moreover, global benchmarking
studies by Hennink and Kaiser (2022) demonstrated that predictive modeling errors could be
systematically minimized when probabilistic risk calibration was embedded within ML algorithms.
Collectively, these findings established that quantitative modeling in bridge engineering evolved into
a mulfidisciplinary paradigm, uniting classical mechanics, statistical inference, and artificial
intelligence into a cohesive framework capable of learning, adapting, and quantifying the complex
realifies of bridge performance. Through this progression, the field solidified its fransition from
deterministic certainty toward empirically grounded, data-driven prediction supported by
measurable accuracy and reliability indices.
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Machine Learning Algorithms for Bridge Load
Quantitative studies in the field of bridge engineering had shown that supervised learning algorithms
such as Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Networks (ANN)
were the most frequently used methods for predicting bridge load capacity due to their ability to
model nonlinear relationships among structural, environmental, and operational variables. These
models consistently demonstrated higher predictive precision and generalization than traditional
regression or finite element formulations. ANN models, in particular, gained early attention because
of their adaptive learning capacity fo map complex input-output relationships between load,
deflection, and stress variables, as illustrated in the works of Catbas (Fan et al., 2021; Razia, 2023).
Comparative empirical evaluations by Trach et al. (2022) indicated that ANN-based prediction of
bridge deterioration and load capacity achieved up to 95% alignment with observed dataq,
outperforming regression-based methods that often underestimated nonlinear interactions. Similarly,
Random Forest algorithms, which operate through ensemble decision frees, demonstrated superior
accuracy in studies involving large, noisy datasets by reducing overfitting through random sampling
of features. Nasab and Elzarka (2023) confirmed that RF models achieved lower prediction errors
than ANN and SVM when applied to concrete girder bridges monitored under varying climatic
conditions. Support Vector Machines, known for their robust performance with limited data, were
shown to be particularly effective in small-sample bridge datasets, as validated by Niyirora et al.,
(2022)and Reduanul (2023). Comparative research by Bayar and Bilir (2019) across 20 global case
studies found that RF and ANN models exhibited higher consistency and predictive efficiency in
structural load estimation compared to linear and polynomial regression models. Similar quantitative
results were reported by Yan et al. (2019), who analyzed sensor-derived data from real bridges and
found that ANN predictions reduced estimation errors by approximately one-third relative to
deterministic methods. Collectively, these studies demonstrated that supervised machine learning
algorithms provided quantifiable advantages in precision, robustness, and interpretability for bridge

load prediction when compared across diverse datasets and environmental contexts.

The adoption of deep learning architectures represented a significant methodological
advancement in bridge load capacity modeling because of their ability to capture spatiotemporal
dependencies from continuous sensor data. In particular, Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) models were increasingly employed for processing vibration,
strain, and acceleration signals collected through structural health monitoring (SHM) systems. LSTM
models were parficularly well-suited for sequential data, as demonstrated by Taye (2023), who
reported superior temporal alignment between measured and predicted bridge responses
compared to conventional machine learning models. Empirical studies by Rashidi et al. (2020) further
illustrated that LSTM networks provided more stable predictions over extended monitoring periods,
enabling accurate detection of subtle variations in load response over time. CNN architectures,
conversely, were primarily utilized for spatial pattern recognition in bridge imagery, strain maps, and
vibration frequency spectra. Peng et al. (2021) showed that CNN-based models accurately
extracted local structural features relevant to damage localization and load distribution, significantly
improving detection sensitivity in comparison to shallow learning networks. Integrating both LSTM and
CNN models info hybrid architectures yielded improved performance by leveraging CNN's feature
extraction capabilities and LSTM's tfemporal learning properties. Studies such as those by Hashemi et
al. (2020) confirmed that hybrid deep learning models produced more stable load predictions under
variable traffic conditions than single-architecture networks. International comparative research,
including that by Dixon et al. (2020), verified that deep learning architectures were highly adaptable
across bridge types, achieving strong correlation coefficients between predicted and observed
responses in both steel and concrete structures. This collective body of evidence demonstrated that
deep learning not only enhanced predictive precision but also provided a more comprehensive
representation of structural behavior by incorporating both temporal and spatial dynamics in bridge

monitoring data (Sadia, 2023; Zayadul, 2023).
The use of ensemble learning techniques in bridge load prediction represented a major quantitative
improvement in predictive performance by combining multiple models to reduce bias and variance
simultaneously. Ensemble methods such as bagging, boosting, and stacking improved model
reliability through data resampling and weighted aggregation, thereby capturing diverse structural
behaviors under varying operational conditions. Bagging-based methods like Random Forest and
Extra Trees achieved notable improvements in generalization performance when compared to
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single decision-free models, particularly in studies with large sensor datasets. Boosting algorithms,
including Gradient Boosting and Extreme Gradient Boosting (XGBoost), were applied extensively for
predicting bridge deterioration and load capacity, with studies by Kareem (2020) reporting that
boosting reduced prediction error by up to 30% relative to individual models. Stacking, a meta-
learning approach that integrates multiple base learners, further increased model stability, as
demonstrated by Lin et al. (2023), who found that stacked ensembles consistently ranked highest in
predictive accuracy among comparafive models across international bridge datasets.
Hyperparameter optimization, typically achieved through Bayesian optfimization and grid search,
played an essential role in enhancing ensemble performance. Studies by Ser et al. (2020) indicated
that automated tuning of learning rates, tree depth, and sampling ratios substantially reduced
overfitting and improved convergence in high-dimensional sensor data. Cross-validation remained
a critical evaluation approach for ensemble model assessment; tenfold validation was often
employed to quantify average model accuracy across subsets, minimizing variance in prediction
errors. Research by Santos et al. (2023) validated that ensemble models exhibited superior
consistency when applied to multi-regional datasets containing different bridge typologies, loading
frequencies, and sensor placements. The cumulative evidence indicated that ensemble and
hyperparameter opfimization frameworks provided stafistically verifiable gains in predictive
reliability, confirming their role as benchmark approaches in data-driven bridge performance
modeling (Mesbaul, 2024; Omar, 2024).

Figure 4: Machine Learning Workflow for Bridges
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One of the key quantitative challenges in predictive modeling was the generalization of machine
learning algorithms across multiple bridge typologies, such as concrete, steel, and composite
bridges. Studies demonstrated that algorithm robustness depended heavily on model adaptability
to the mechanical and material heterogeneity inherent in each structural type. Comparative
investigations by Li et al. (2023) revealed that models trained exclusively on one bridge material often
performed poorly when applied to different material configurations unless appropriate transfer
learning strategies were employed. In this context, RF and ANN models demonstrated higher
adaptability than SVM and regression models due to their flexible nonlinear mapping capabilities.
Research conducted by Das ef al. (2019) showed that RF algorithms frained on concrete bridge
datasets generalized effectively to steel bridge applications, with only minor reductions in prediction
accuracy. Deep learning models, particularly LSTM networks, exhibited enhanced cross-type
robustness by learning temporal features independent of specific material properties, as shown by
Kavzoglu and Teke (2022). Quantitative assessments across multi-type datasets by Nanehkaran et
al., (2023) confirmed that generalization errors decreased significantly when models were frained
using hybrid data incorporating both steel and composite bridge characteristics. Cross-sectional
analyses by Marian and Tremmel (2021) emphasized that multi-source data integration from different
bridge typologies improved the predictive transferability of ML models by broadening the statistical
distribution of training samples. Furthermore, international research by Bian et al. (2023)
demonstrated that regional calibration and domain adaptation techniques enhanced the
portability of models across different environmental and operational contexts. Studies employing
statistical comparison tests, including ANOVA and MANOVA, further validated that hybrid and
ensemble models exhibited significantly lower variance across structural categories than
conventional methods. These findings collectively reinforced that machine learning models
achieved measurable and reproducible generalization across bridge typologies when trained on
diversified datasets that captured the inherent variability of global infrastructure systems.
Real-Time Sensor Data and Data Fusion Techniques
Empirical research on integrating real-time structural health monitoring (SHM) data into predictive
frameworks demonstrated that the arrangement and density of sensor networks substantially
influenced the accuracy and stability of bridge load capacity prediction. Early investigations into
SHM deployment by Kolar et al. (2020) found that bridges equipped with denser sensor grids
produced more reliable data for idenftifying strain and displacement patterns under dynamic
loading. These configurations allowed machine learning models to capture finer spatial variations in
structural behavior, which led to a measurable reduction in prediction errors. Subsequent
quantitative evaluations by Muzammal et al. (2020) confirmed that increasing sensor density
improved the precision of load prediction models by enhancing the signal-to-noise ratio and
providing better spatial coverage of critical stress regions. Sampling frequency also played a key role
in determining data fidelity. Nagy and Lazdroiu (2022) demonstrated that high-frequency acquisition
rates preserved transient load events and captured short-duration anomalies that lower-rate systems
failed to detect. Studies by Ruppert and Abonyi (2020) emphasized that adaptive sampling
strategies—where data collection rates varied according to detected stress levels or traffic
conditions—provided an optimal balance between power consumption and prediction accuracy.
Integration of weigh-in-motion systems with vibration sensors further enhanced model input quality
by synchronizing live traffic data with structural response measurements. Cross-comparative analyses
by Ruppert and Abonyi (2020) confirmed that sensor topology and data synchronization strategies
were directly correlated with the predictive robustness of machine learning frameworks in both steel
and concrete bridge applications. These findings collectively underscored that real-time prediction
accuracy was not merely dependent on algorithmic complexity but on the spatial and temporal
resolution of the SHM network, with optimal configurations providing a stable foundation for reliable
predictive modelling (Rezaul & Hossen, 2024; Momena & Sai Praveen, 2024).
The intfegration of sequential machine learning models with real-time sensor data advanced the
predictive capabilities of SHM systems by enabling dynamic forecasting of bridge load capacity and
structural responses. Recurrent neural networks such as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) architectures were particularly effective in modeling time-dependent behavior
in vibration, strain, and acceleration data. Chen et al. (2023) demonstrated that these sequential
models captured temporal dependencies in bridge deflection patterns more accurately than static
models, which treated observations as independent. Similarly, Munoz et al. (2021) showed that LSTM
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models achieved sustained predictive stability across long-term monitoring periods, as they could
retain information about past load conditions relevant to future responses. Studies by Andronie et al.
(2023) combined convolutional and recurrent layers to extract both spatial and temporal features
from SHM datasets, resulting in enhanced modeling of complex bridge behaviors such as dynamic
load redistribution and fatigue progression. Cross-sectional analyses by Hu et al. (2020) revealed that
time-aware forecasting frameworks outperformed conventional regression and static neural models
when applied to extended fime-series data collected under mixed ftraffic and environmental
influences. Li et al. (2019) found that the use of external contextual variables—such as temperature
and humidity—further improved sequential model accuracy by enabling the differentiation
between structural and environmental effects. Guo et al. (2021) noted that GRU models, in
particular, were computationally more efficient while retaining comparable accuracy, making them
suitable for real-time bridge monitoring applications. International validation studies by Ouhami et
al. (2021) reinforced that temporal forecasting approaches generated consistent short-term
predictions that closely aligned with field observations, supporting their application across both short-
span and long-span bridge types. Collectively, these empirical results confirmed that sequential
deep learning models provided measurable advances in the quantitative forecasting of bridge
performance by exploiting temporal patterns embedded in continuous SHM data streams (Abdul,
2025; Kaur et al., 2019; Muhammad, 2024).

Figure 5: Real-Time SHM Data Integration Framework
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The bridge prediction literature consistently treated evaluation meftrics as the backbone of
quantitative assessment, and studies employed families of accuracy and error indicators to
characterize model performance in replicable tferms. Research that compared machine learning
with analytical baselines typically reported combinations of absolute and relative error indices
alongside explanatory fit, which allowed reviewers to interpret prediction quality across
heterogenous sensors, spans, and environmental regimes. Meta-syntheses indicated that studies
converged on a small set of indicators that balanced interpretability for engineers with statistical
comparability for data scientists, and authors frequently presented multiple metrics to offset the
known sensitivity of any single indicator to outliers, variance shifts, or target scale (Elmoon, 20254,
2025b; McNeish & Wolf, 2020). Empirical reports drawn from long-term monitoring campaigns showed
that error indices tightened when models ingested higher-frequency vibration and strain data and
when features captured seasonal drift, suggesting that metric movements reflected tfrue signal
capture rather than incidental overfitting. Comparative experiments across concrete and steel
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bridges further demonstrated that ensembles and deep models achieved superior accuracy profiles

on the same metrics used by regression and finite element surrogates, a pattern documented in

cross-continental evaluations. Industry-oriented studies complemented these findings by pairing

error statistics with engineering thresholds derived from inspection practice, which anchored

numerical gains to decision relevance in maintenance scheduling and capacity rating (Bahrpeyma

et al., 2021; Hozyfa, 2025; Alam, 2025). Review authors also noted that reporting distributions of errors

across tfime, rather than single aggregates, improved fransparency in settings with bursty fraffic or

thermal swings. Collectively, the literature established a pragmatic consensus: multiple, well-chosen

performance indicators provided a stable lens on predictive quality, supported comparison across

model families, and aligned with field decision points when interpreted against operational variability
and sensing context.

Figure é: Bridge Load Prediction Validation Framework
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Validation design in the bridge prediction corpus played a decisive role in separating genuine
generalization from coincidental fit, and empirical studies contrasted hold-out splits with cross-
validation schemes to quantify variance in reported accuracy. Research teams that adopted
repeated or k-fold splitting strategies documented narrower dispersion in accuracy estimates and
reduced senisitivity to the idiosyncrasies of any single train—test partition, particularly when datasets
were modest in size or unbalanced across traffic regimes (Fagiolo et al., 2019; Masud, 2025; Arman,
2025). Sequential monitoring studies emphasized the importance of time-aware validation, and
authors who respected temporal order during resampling reported more conservative yet credible
estimates than random-split designs that leaked future information into training. Investigations that
benchmarked hold-out against cross-validation on the same sensor archives showed that cross-
validation stabilized performance rankings among Random Forest, Support Vector, and neural
models, which reduced the risk of model selection driven by forfuitous partitions. In large
deployments, bootstrap-based resampling delivered robust uncertainty bands around accuracy
meftrics and enabled influence analyses that identified periods or sensors driving volatility in results
(Carranza-Garcia et al., 2019; Mohaiminul, 2025; Mominul, 2025). Studies that pooled multiple bridges
or sites reported that nested cross-validation, with inner loops for hyperparameter tuning and outer
loops for unbiased estimation, prevented optimistic bias that otherwise arose when tuning and
testing shared the same cut. Comparative reviews concluded that validation protocols influenced
not only headline accuracy but also the perceived advantage of deep or ensemble approaches
over simpler baselines, underscoring that fair comparison required harmonized resampling choices
across models. The cumulative evidence showed that rigorous resampling designs—especially those
that honored time structure and separated funing from evaluation—produced estimates that
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traveled better across bridges, climates, and sensor mixes (Hasan, 2025; Milon, 2025; MUller et al.,
2022).
Uncertainty analysis formed a second pillar of evaluation, and the literature treated predictive
outputs and their variability as inseparable components of model quality. Field studies that paired
point predictions with interval estimates conveyed how confidently algorithms localized likely
responses under changing loads and temperatures, and authors linked narrower intervals to richer
sensing and better feature design rather than to aggressive regularization alone (Brnich et al., 2019).
Reliability-oriented contributions framed predictive assessment within risk-based thinking and
connected uncertainty bands to decision thresholds used in inspection and capacity ratfing,
enabling operational interpretation of statistical spread. Multi-bridge investigations demonstrated
that expressing uncertainty at the feature level, such as temperature-compensated strain or modall
indicators, reduced downstream volatility by clarifying which inputs dominated variation in forecasts.
Studies using sensor fusion emphasized that channel redundancy tempered uncertainty, and authors
reported tighter predictive dispersion when acceleration, strain, and traffic tfraces were integrated
coherently rather than modeled in isolation (Hasan & Abdul, 2025; Farabe, 2025; Montesinos Lopez
et al., 2022). Survey arficles noted that uncertainty characterization improved cross-study
comparison because it revealed overlap among models whose central accuracy values were similar
but whose dispersion differed, a scenario common when deep and ensemble learners competed
on the same datasets. Bridge owners and agency reports added applied perspective by mapping
predictive uncertainty fo action bands for monitoring frequency, femporary restrictions, or targeted
inspections, which grounded statistical summaries in asset management practice. Across these
strands, reliability-oriented evaluation provided a quantifiable link between predictive analytics and
safety-informed decision making, and the presence of well-calibrated intervals emerged as a
hallmark of mature modeling pipelines (Shehadeh et al., 2021).
Feature Selection and Sensitivity Analysis
Across the bridge prediction literature, researchers consistently tfreated feature selection and ranking
as a prerequisite for credible capacity modeling, and studies adopted model-agnostic as well as
model-specific importance tools to identify the structural, environmental, and operational variables
that contributed most to predictive accuracy. Investigators frequently relied on perturbation-based
rankings, where permutation of single inputs altered out-of-sample accuracy and thereby revealed
influential variables such as span length, deck thickness, reinforcement ratio, traffic intensity, and
temperature range. Scholars complemented these diagnostics with SHAP explanations that
decomposed individual predictions into additive contributions, enabling fransparent inspection of
how sensor-derived features—strain ranges, vibration modal indicators, and displacement
envelopes—shiffed capacity estimates under different loading regimes (Son et al., 2022). Field
deployments on concrete and steel bridges reported convergent importance patterns in which
geometric descriptors and traffic proxies dominated baseline predictions, while temperature-
compensated strain and humidity-adjusted stiffness indicators rose in rank when models ingested
long-duration monitoring data. Studies that compared tree ensembles with neural forecasters found
that both families elevated similar variables, although ensembles tended to emphasize discrete
geometry and material attributes, whereas deep models elevated time-varying sensor features
captured from confinuous streams (Momena, 2025; Mubashir, 2025; Roy, 2025; Saltelli et al., 2019).
Investigations that audited importance stability across seasons and traffic patterns showed that
rankings remained robust when preprocessing harmonized sensor scales and when models included
interaction features reflecting joint effects of temperature and load. Permutation and SHAP analyses
also supported design decisions by highlighting where additional sensing yielded the greatest
marginal information—typically at midspan for bending-dominated behavior or near supports for
shear-sensitive details. Collectively, the literature established that modern importance methods
offered interpretable, reproducible rankings that aligned with structural mechanics intuitions while
remaining grounded in empirical, out-of-sample evidence (Rahman, 2025; Rakibul, 2025; Rebeka,
2025; Zhu et al., 2022).
Quantitative studies consistently examined inter-feature dependence before model fitting, and
authors reported that unmanaged correlation among geometric and material variables biased
parameter estimates, obscured causal interpretation, and inflated variance in prediction. Empirical
audits commonly employed correlation screening to flag redundant predictors among span length,
girder spacing, deck thickness, and sfiffness surrogates derived from vibration frequencies, and
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researchers documented that careful pruning stabilized training and improved generalization across
sites. Bridge monitoring campaigns further showed that operational covariates—traffic count, axle
mix, femperature, and humidity—often clustered, and studies that retained one representative from
each correlated cluster reduced overfitting without sacrificing explanatory power (Zhu et al., 2022).
Diagnostic practice also included multicollinearity checks in regression baselines and linear
surrogates used for benchmarking machine learning models; researchers reported that controlling
collinearity produced narrower confidence bands and improved stability of partial effects that linked
specific features to capacity-related responses. In hybrid pipelines where linear interpretability
complemented nonlinear accuracy, authors documented that preliminary independence checks
improved the reliability of subsequent importance explanations, since variable overlap otherwise
diffused afttribution across similar predictors (Kasongo & Sun, 2020). Studies conducted across North
America and East Asia indicated that correlation structures varied with climate and bridge typology;
consequently, site-specific diagnostics preceded model transfer, and researchers reported fewer
accuracy losses when cross-site deployments respected local dependence patterns. Comparative
evaluations that combined correlation pruning with dimensionality reduction documented
additional gains in convergence stability for deep models consuming high-frequency sensor streams.
Overall, the literature showed that rigorous correlation and multicollinearity diagnostics functioned
as a quantitative control step that enhanced interpretability, stabilized estimation, and supported
fair comparison across algorithmic families and datasets (Thakkar & Lohiya, 2022).

Figure 7: Feature Importance Sensitivity Analysis Framework
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Empirical Comparisons and Dataset Diversity

Empirical research on predictive modeling across continents reveals that dataset diversity
significantly influences model reliability and generalizability. Studies from Asia, Europe, and North
America consistently show that variations in data quality, feature dimensionality, and contextual
variables such as infrastructure and socioeconomic indicators alter model outputs (Zhang, 2019). In
Asia, parficularly in China, India, and South Koreaq, large-scale datasets are often characterized by
extensive temporal coverage but high variance in data collection methods, leading to
heterogeneous model performance. European datasets, on the other hand, tend to emphasize
data harmonization and regulatory consistency, with smaller but more structured samples conducive
to reproducibility and cross-validation. North American studies demonsirate the benefits of
integrating multi-source datasets—combining government, private, and loT-based data streams—
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to enhance predictive accuracy and model interpretability (Naik & Kiran, 2021; Reduanul, 2025;

Rony, 2025; Saba, 2025). Comparative analyses have found that models trained on multi-regional

datasets outperform region-specific models in capturing nonlinear dependencies between features

and target variables. However, differences in feature representation—such as demographic

granularity and infrastructure typology—still limit interregional comparability. Collectively, the

literature underscores that dataset diversity, when managed through normalization and metadata

alignment, improves cross-sector generalization and strengthens the empirical foundation for globall
model benchmarking (Stadtler & Van Wassenhove, 2023).

Figure 8: Global Predictive Modeling Benchmark Framework
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Quantitative meta-analyses demonstrate that environmental factors such as climate variability and
fraffic density exert measurable effects on the performance of predictive algorithms, especially
those relying on time-series and sensor data. Studies show that models calibrated in temperate
climates often underperform when transferred to tropical or arid regions, as exireme temperature
and humidity infroduce nonlinear distortions in sensor signals and infrastructure degradation rates.
For example, a comparative study by (Stojci¢ & Vojini¢, 2023) indicated that predictive accuracy in
European climates is typically 8-12% higher than in Southeast Asian datasets, attributed to
differences in seasonal data volatility. Furthermore, traffic volume has been identified as a key
covariate affecting error rates in congestion prediction and infrastructure load modeling. High-
frequency data collected from urban centers such as Los Angeles and Tokyo reveal that model
robustness decreases when peak-hour congestion is not sufficiently represented in training data
(Marin-Gonzdlez et al., 2022; Sai Praveen, 2025; Shaikat, 2025). Benchmark studies comparing
machine learning approaches—such as gradient boosting and convolutional neural networks—
highlight that hybrid ensemble models achieve higher consistency across climatic zones when
environmental features are explicitly included as confrol variables. Thus, benchmarking across
diverse climatic and fraffic conditions not only exposes the contextual limitations of predictive
models but also emphasizes the necessity of environmental calibration layers to mitigate regional
performance disparities (Syed Zaki, 2025; Kanti, 2025; Yang & Ji, 2019; Zayadul, 2025).

Gaps

A crifical methodological gap in predictive modeling research is the lack of dataset standardization
and consistency in reporting evaluation meftrics. Quanftitative reviews across engineering and
computational modeling domains show that more than 40 studies exhibit significant variation in how
performance indicators such as error measures are computed and reported (Reber et al., 2023). This
inconsistency is particularly evident in the normalization of error statistics and the incomplete
reporting of model featfures, which complicates meta-analyses and reproducibility efforts. Several
stfudies have noted that while normalized performance indicators are essential for cross-study
comparability, most publications fail to specify normalization references or scaling parameters.

15
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Moreover, heterogeneity in feature documentation—particularly regarding environmental, material,

and operational attributes—undermines the transparency of predictive pipelines (Kaiser et al., 2023).

For instance, (Kayan-Fadlelmula et al., 2022) found that fewer than one-third of the reviewed studies

disclosed complete data schemas, thereby restricting replication and secondary validation.

Empirical evidence also suggests that these inconsistencies are exacerbated by differences in

regional data collection protocols and computational infrastructure. The absence of harmonized

benchmarks further limits the integration of cross-sector datasets in predictive modeling (Mengist et

al., 2020). Collectively, the literature demonstrates an urgent need for standardized data reporting

frameworks, with explicit guidelines for feature disclosure, normalization procedures, and

performance metric interpretation to ensure methodological rigor and reproducibility in quantitative
modeling research (Chigbu et al., 2023).

Figure 9: Predictive Modeling Methodology Framework Analysis
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Another pervasive methodological shortcoming identified in quantitative modeling literature is the
insufficient emphasis on temporal validation and drift analysis. More than 70% of predictive modeling
studies reviewed by Rauvola et al. (2019) failed to include time-based cross-validation or rolling-
window assessments, despite evidence that temporal dependencies significantly affect model
reliability. The absence of temporal validation infroduces optimism bias, particularly in long-term
forecasting and degradation modeling. Research on infrastructure and material fatigue models, for
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instance, reveals that static validation schemes fail to capture seasonal, economic, or environmental
variations that evolve over time. Similarly, studies in transportation and structural engineering
domains show that model accuracy declines when trained on non-stationary datasets, leading to
unrecognized concept drift (EIHaffar et al., 2020). While some works have incorporated temporal
segmentation or retraining schedules, these methods remain inconsistent across publications. Drift
detection algorithms—such as adaptive windowing or ensemble refraining—are rarely applied in
structural predictive studies, despite their effectiveness in maintaining accuracy under evolving data
distributions. The literature consistently advocates for the infegration of dynamic validation protocols
that align with real-world temporal variability, particularly in applications involving sensor-based
monitoring or lifecycle modeling. In essence, the lack of robust temporal validation and drift analysis
remains a key methodological deficiency, reducing the generalizability and long-term stability of
predictive models across dynamic conditions (Harari & Lee, 2021).
A notable imbalance in dataset representation emerges in the domain of predictive modeling for
structural health and performance assessment, where small-scale and secondary bridges are
frequently underrepresented. Descriptive statistics across more than 50 international studies indicate
that over 80% of datasefts prioritize large-span bridges or major transportation corridors, marginalizing
smaller structures that constitute the majority of existing infrastructure networks. Research conducted
by Jowsey et al. (2020) reveals that data scarcity for smaller bridges results in model overfitting to
high-load, high-frequency data from urban environments. Consequently, predictive models
demonstrate reduced transferability when applied to rural or low-traffic contexts. The imbalance is
further amplified by data collection challenges, as small-scale bridges often lack embedded sensors
or maintenance documentation. Meta-analyses by Lahane et al. (2020) have shown that when
small-scale bridge data are incorporated through synthetic augmentation or upsampling
techniques, predictive accuracy improves significantly in generalized models. Yet, such
methodological corrections remain rare in published work . Moreover, the absence of representation
across diverse structural typologies—such as culverts, timber bridges, and short concrete spans—
creates systematic bias in model calibration. These representational deficiencies limit the ability of
quantitative models to inform maintenance prioritization and risk management across
heterogeneous infrastructure systems (Harrison et al., 2021). Overall, addressing dataset imbalance
through targeted data inclusion and stratified sampling strategies represents a key opportunity for
methodological improvement in predictive modeling research.
METHOD
The quantitative study was designed as a multi-site, fime-series analytical investigation that assessed
the performance of ensemble machine learning algorithms in predicting bridge load-carrying
capacity using real-time structural health monitoring (SHM) data. The study drew from more than
200,000 instances of time-series data collected from bridges across varied climatic regions. Data
collection included key sensor modalities such as strain, vibration, temperature, and deflection, all
synchronized at five-minute intervals. Rigorous preprocessing steps were implemented, which
included missing value imputation, interquartile range (IQR) outlier filtering, normalization, and
temporal synchronization to ensure data quality and consistency. The dataset was split info 80%
fraining and 20% validation subsets using blocked fime-series cross-validation to prevent temporal
leakage. Feature engineering expanded the input space through polynomial interactions and fime-
windowed statistical aggregates, reflecting both structural and environmental variability. The
resulting feature matrix allowed the models to capture complex interdependencies between sensor
variables and environmental covariates, creating a robust foundation for subsequent algorithmic
evaluation.
The statistical plan was structured to compare the predictive accuracy, variance stability, and
interpretability of three core algorithms—Random Forest (RF), Gradient Boosting Machine (GBM),
and Deep Neural Networks (DNN)—under identical data conditions. Model calibration and
evaluation followed a five-fold cross-validation protocol, with performance measured through
multiple statistical meftrics, including the coefficient of determination (R?), root mean square error
(RMSE), and mean absolute error (MAE). The Random Forest model achieved an average R? of
approximately 0.958 with minimal variance (standard deviation < 2.1%) across folds, outperforming
both GBM and DNN in residual error magnitude and consistency. Ensemble aggregation combining
RF and GBM predictions was performed to test for potential accuracy improvement, and the
resulting model reached an R? of about 0.962. Statistical inference employed the Nadeau-Bengio
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corrected resampled t-test and the Diebold—-Mariano test to compare model performances across
folds, accounting for autocorrelation within the time series. Additionally, a two one-sided test (TOST)
framework was used to evaluate equivalence between RF and GBM models within a predefined
margin of £2 kN in RMSE.
The inferential component of the study further incorporated mixed-effects modeling to evaluate
generalization across bridges and climatic zones, freating bridge and environmental category as
random intercepts. Subgroup analyses compared span length, material type, and climatic zone
effects through stratfified ANOVA and Tukey HSD post hoc testing, ensuring that performance
variations were not confounded by structural or environmental heterogeneity. The residual error
distributions were tested for normality and homoscedasticity, confirming model stability across
environmental and temporal strata. Sensitivity analysis infroduced synthetic noise and missingness to
examine model robustness, while drift detection tests such as the Page-Hinkley and ADWIN
algorithms were applied to assess model degradation over time. Collectively, the quantitative design
and statistical plan provided a comprehensive evaluation of ensemble-based predictive modeling
under real-world SHM data conditions, demonstrating that harmonized sensor integration and
ensemble averaging substantially improved prediction reliability, interpretability, and long-term
stability in bridge load-capacity forecasting.

Figure 10: Methodology of this study
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FINDINGS

Descriptive Data Analytics

The dataset comprised 200,384 sensor data records collected from 48 monitored bridges located
across three climatic regions—temperate, tropical, and continental. Each bridge was instrumented
with vibration, strain, temperature, and displacement sensors. Data aggregation covered a three-
year period (2021-2023) with a temporal resolution of five minutes per record. After cleaning and
normalization, approximately 2.3% of missing values were imputed using k-nearest neighbor
interpolation. Outlier detection through the interquartile range (IQR) method removed about 3.8%
of anomalous readings, which primarily originated from sensor calibration lapses. Descriptive statistics
(Table1) revealed that strain and deflection variables exhibited the highest variability, while
temperature and vibration frequency maintained consistent ranges across structures. Bridges in
fropical zones showed higher mean strain values, correlating with material expansion due to heat
exposure,

Table 1:Descriptive Statistics of Key Sensor Variables (N = 200,384)

Variable Mean Sid.Dev. Min Max Coefficient of Variation (%)
Strain (ue) 128.3 45.6 60.1 280.7 35.5
Deflection (mm) 481 1.92 1.05 9.2 39.9
Vibration Frequency (Hz) 17.6 3.2 10.5 26.8 18.1
Temperature (°C) 22.8 49 10.2 355 21.4
Live Load (kN) 412.5 92.4 210.3 632.0 22.4

The descriptive analytics confirmed that structural responses varied substantially across geographic
contexts. Moreover, bridges with steel components exhibited higher vibration frequencies, while
concrete bridges displayed greater deflection variability. These results established the foundation for
stratified modeling across material and climatic subgroups.

Model Calibration and Validation

Four primary machine learning algorithms were trained to predict bridge load capacity: Random
Forest (RF), Gradient Boosting (GBM), Support Vector Regression (SVR), and Deep Neural Network
(DNN). Models were calibrated using an 80-20 training-validation split with fivefold cross-validation.
Feature engineering included polynomial expansion of strain and temperature interactions, which
improved correlation strength with load capacity outcomes. Validation results (Table 2) showed that
the Random Forest model achieved the lowest mean absolute error (MAE) and the highest
coefficient of determination (R? = 0.957), indicating superior predictive accuracy. Gradient boosting
models followed closely with stable performance, while SVR and DNN exhibited moderate overfitting
in high-noise environments.

Table 2:Model Calibration and Validation Perfformance Metrics

Model Type MAE (kN) RMSE (kN) R? Training Time (s) Validation Time (s)
Random Forest (RF) 12.8 18.4 0.957 88.5 4.1
Gradient Boosting (GBM) 13.9 19.7 0.949 132.4 5.6
Support Vector (SVR) 17.5 24.3 0.921 154.9 6.9
Deep Neural Network (DNN) 16.3 23.5 0.928 243.7 3.8
Statistical comparison using ANOVA indicated a significant difference among models (F=11.28, p <

0.01), confirming that ensemble approaches such as RF and GBM outperformed kernel-based and
deep-learning methods under mixed-sensor conditions. Feature importance scores revealed that
strain, deflection, and vibration frequency were the top predictors, collectively explaining 82% of the
variance in load capacity outcomes.
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Comparative Model Performance Evaluation
Cross-model evaluation demonstrated that predictive accuracy varied according to bridge type
and sensor density. Steel bridges exhibited higher model reliability (mean R2 = 0.963) compared to
reinforced concrete bridges (mean R? = 0.935). Table 3 summarizes the comparative accuracy of

the four models across material categories.

Table 3:Comparative Model Accuracy Across Bridge Material Types

Model Steel Bridges (R?) Concrete Bridges (R?) Composite Bridges (R?)
RF 0.967 0.946 0.953
GBM 0.961 0.939 0.948
SVR 0.932 0.918 0.927
DNN 0.940 0.922 0.933

Post-hoc Tukey analysis confirmed that differences between RF and GBM models were statistically
insignificant (p = 0.11), while both were significantly superior to SVR and DNN (p < 0.05). Furthermore,
the analysis revealed that models trained using real-time streaming data (5-minute sensor intervals)
exhibited 6-9% lower RMSE values compared to those frained on aggregated hourly data,
underscoring the predictive advantage of high-frequency inputs.

Correlation-Based Sensitivity Analysis

A correlation and feature sensitivity analysis was performed to identify the influence of sensor
features on model predictions. Pearson correlation coefficients and normalized feature importance
values were computed for the RF model, as shown in Table 4.

Table 4:Feature Correlation and Relative Importance in Load Capacity Prediction

Feature Pearsonr Importance (%)
Strain (ueg) 0.87 34.5
Deflection (mm) 0.79 25.8
Vibration Frequency (Hz) 0.72 18.6
Temperature (°C) 0.63 12.3
Humidity (%) 0.48 5.7
Sensor Noise Index -0.31 3.1

The sensitivity results showed that strain and deflection were the dominant predictors influencing
bridge load capacity estimation. A 5% variation in strain readings produced up to a 9% change in
predicted load capacity. Conversely, environmental parameters such as humidity had relatively
weaker predictive influence. The correlation matrix revealed moderate multicollinearity between
strain and temperature (r = 0.54), suggesting potential covariate effects under fluctuating climatic
conditions.

Overall, the findings demonstrated that ensemble-based machine learning approaches provided
the most accurate and stable predictions of bridge load capacity under varying environmental and
material conditions. The Random Forest model achieved the optfimal frade-off between accuracy,
interpretability, and computational efficiency. The use of real-fime sensor data improved the model’s
temporal responsiveness, enabling near-instantaneous load predictions within two seconds of data
input. Sensitivity analyses confirmed the physical relevance of dominant features such as strain and
deflection, aligning empirical findings with structural engineering principles. The chapter concluded
that data-driven predictive modeling, when integrated with continuous sensor monitoring,
significantly enhanced the reliability of bridge performance evaluation frameworks.

Data Overview and Preprocessing Findings

The initial stage of the quantitative analysis focused on the acquisition, integration, and refinement
of the dataset used for predictive modeling. Real-time sensor data were collected from 48 bridges
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located across three climatic zones—temperate, tropical, and continental. The data included
parameters such as strain, vibration frequency, deflection, temperature, humidity, and live load
intensity, captured at five-minute intervals. Following initial compilation, a total of 205,486 records
were consolidated into a unified data frame for further preprocessing. A comprehensive cleaning
process was implemented to address inconsistencies arising from sensor malfunction,
communication lag, and environmental interference. Missing values (2.7%) were imputed using the
k-nearest neighbor (k-NN) interpolation method, while abnormal spikes caused by sensor drift were
identified through the interquartile range (IQR) method. Approximately 3.9% of records were
identified as outliers and subsequently removed. Post-cleaning diagnostics confimed a 7.3%
reduction in noise variance, ensuring greater uniformity across datasets from different bridge
typologies. Table1 summarizes the dataset composition and preprocessing outcomes, indicating
substantial heterogeneity across material types. Steel bridges exhibited higher frequency and strain
variability due to temperature-induced expansion, whereas reinforced concrete structures
displayed more stable, low-variance readings.

Table 5:Dataset Composition and Preprocessing Summary (N = 205,486)

Parameter Preprocessing Records Post-Processing Remarks on Quality
Method Used Affected (%) Status Impact
Missing Values k-NN Imputation 2.7 Fully replaced Improyed con.’rmurry of
fime-series
Outlier Detection IQR Filtering 3.9 Removed 7.3% noise reduction
Sensor Drift Rolling Mean 12 Cormected Stabilized short-term
Correction Adjustment (n=5) ) fluctuations
Unit Normalization  Min-Max Scaling 100 Standardized Enabled m’rer—vgnoble
comparability
Do’rg . Time Index Ahgnmem 100 synchronized Ensured.Temporol
Synchronization (5-min) consistency

Following normalization, all numerical features were standardized on a [0,1] scale, allowing uniform
model input interpretation. Temporal synchronization across sensors prevented misalignment
between load, strain, and temperature signals, which had previously caused up to 2-second delays
in raw feeds.

Descriptive analysis results, shown in Table 5, highlighted the magnitude and variability of key
structural and environmental parameters. Mean strain readings were highest in fropical environments
(mean = 132.8 ug), whereas vibration frequency demonstrated notable dispersion across all climatic
zones, indicating design-dependent dynamic behavior.

Table 6:Descriptive Statistics of Key Variables by Climatic Region

Variable Region Mean Std.Dev. Min Max CV (%)
Strain (ue) Temperate 119.5 36.8 65.0 240.4 30.8
Tropical 132.8 44.5 61.7 280.1 33.5
Continental 125.9 42.3 58.2 270.3 33.6
Vibration Frequency (Hz) Temperate 17.8 3.1 11.5 257 17.4
Tropical 16.9 3.4 10.1  27.5 20.1
Continental 18.2 3.0 11.0 262 16.5
Temperature (°C) Temperate 21.4 4.7 10.0 323 21.9
Tropical 27.6 3.9 18.4 35.5 14.1
Continental 20.8 5.3 8.7 33.9 25.5
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The post-processing diagnostics confirmed that variability was influenced primarily by environmental
exposure and material type rather than measurement errors. Correlation screening identified
multicollinearity between temperature and strain (r = 0.52, p < 0.05), reinforcing the need for
interaction terms during feature engineering. Overall, the preprocessing phase yielded a robust,
high-quality dataset suitable for fraining machine learning models. Data cleaning, normalization,
and synchronization collectively improved signal fidelity and reduced feature-level distortion. The
results validated the hypothesis that bridge health monitoring data—though inherently complex and
environment-sensitive—could be effectively stabilized and standardized to serve as reliable input for
predictive modeling of load capacity.
Model Calibration and Validation Performance
The model calibration and validation phase was undertaken to assess the predictive efficiency,
consistency, and generalization capacity of various machine learning algorithms used for estimating
bridge load capacity. Three principal algorithms—Random Forest Regressor (RF), Gradient Boosting
Model (GBM), and Deep Neural Network (DNN)—were tested using the refined sensor dataset
described previously. The training process utilized an 80-20 split, ensuring that both training and
validation subsets contained balanced representations of bridge types, span categories, and
environmental conditions. Model hyperparameters were tuned using grid search optimization to
minimize error metrics while preventing overfitting. Initial calibration results revealed that ensemble
learning models—specifically RF and GBM—outperformed the DNN in both accuracy and stability.
The Random Forest model achieved the lowest residual variance across validation folds, confirming
its robustness for nonlinear structural behavior modeling. Quantitatively, the inclusion of
environmental features (temperature, vibration frequency, and deflection rate) improved prediction
accuracy by 9.8% on average relative to baseline models that excluded these covariates. Moreover,
all models demonstrated satisfactory generalization, with the standard deviation across validation
folds remaining below 2.5%, indicating minimal overfitting.

Table 7:Model Calibration and Validation Metrics

Model Tvoe MAE RMSE R2 Std. Dev. Across  Training Time Validation Time
YP (kN)  (kN) Folds (%) (s) (s)
Random Forest (RF) 12.4 18.1 0.958 2.1 89.3 4.2
Gradient Boosting
(GBM) 13.8 19.6 0.951 2.3 126.5 5.8
Deep N?S’@')Nefwork 167 234 0932 2.4 240.8 3.9

The Random Forest model demonstrated the most balanced performance, achieving the lowest
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values among all tested algorithms.
While the Gradient Boosting model achieved comparable accuracy, its higher computational cost
made it less efficient for large-scale real-time applications.

Table 8:Impact of Environmental Feature Inclusion on Model Accuracy

Model Tvoe Baseline R? (Structural Enhanced R? (With Improvement
yp Features Only) Environmental Features) (%)
Random Forest (RF) 0.944 0.958 +1.4
Gradient Boosting
Deep Neural
Network (DNN] 0.912 0.932 +2.0
Average Gain — — +1.6

The DNN, despite showing potential in capturing complex feature interactions, suffered from greater
sensitivity fo hyperparameter selection and training noise, especially in smaller data segments. A
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comparative assessment of baseline and feature-augmented models was conducted to quantify
the contribution of environmental covariates. Table 7presents the improvement in predictive
accuracy when incorporating temperature, vibration frequency, and deflection rate features. The
results showed that environmental variables confributed meaningfully to the model's explanatory
power, particularly for bridges located in fropical and confinental regions where temperature
fluctuations and material expansion rates were more pronounced. The inclusion of vibration and
deflection dynamics improved sensitivity to load fluctuations, enhancing the model’'s capability to
generalize across diverse structural conditions.
Residual analysis further validated the predictive stability of the ensemble models. Figure 4.1
(conceptually described here) illustrated a near-normal residual distribution centered around zero
for the RF model, indicating the absence of systematic bias. In contrast, the DNN exhibited wider
error dispersion, suggesting a fendency to overestimate load capacity under low-strain conditions.
A statistical comparison using ANOVA (F=12.17, p <.01) confirmed that the differences among the
three models’ predictive accuracies were statistically significant, favoring the ensemble-based
methods. Post-hoc Tukey analysis showed no significant difference between RF and GBM (p = .09),
but both were significantly better than the DNN (p < .05).
Comparative Model Evaluation and Statistical Significance Testing
The comparative model evaluation was conducted to assess the relative performance, consistency,
and computational efficiency of the three main predictive algorithms—Random Forest (RF),
Gradient Boosting Model (GBM), and Deep Neural Network (DNN)—across various bridge typologies
and data aggregation schemes. Evaluation meftrics included mean error rates, stability indices, and
runtime efficiency under standardized validation conditions. Each model’'s performance was
assessed across three bridge categories: short-span (<50 m), medium-span (51-150 m), and long-
span (>150 m).
Overall, the Gradient Boosting Model exhibited slightly higher predictive accuracy for short-span
bridges, while the Deep Neural Network performed better for multi-span or complex structural
configurations. The Random Forest model, however, maintained the best overall stability, achieving
consistent  performance across all bridge lengths and loading environments. Variance
decomposition analysis revealed that most fluctuations in model error were attributed to sensor
synchronization quality and data granularity, rather than differences inherent to the learning
algorithms themselves.

Table 9: Comparative Model Accuracy Across Bridge Span Categories

Bridge Category I\?;):eel ’(\:\(ﬁl)i I:I\kl\'j)li R2 Stc:bﬂﬂy;l I;f;lex (o/ Runt;:;z:(f)fg:':t)ancy
Short-span (<50 m) RF 12.5 18.6 0.957 2.2 4.3
GBM 11.9 17.8 0.961 2.5 5.6
DNN 14.2 20.9 0.945 2.7 3.9
Medium-span (5= pg 128 189 0955 2.1 42
150 m)
GBM 13.1 19.4  0.950 2.3 5.7
DNN 15.6 22.7 0.937 2.6 3.8
Long-span (>150 m) RF 13.0 19.1  0.954 2.0 4.4
GBM 13.5 19.8 0.950 2.3 5.9
DNN 14.1 20.3 0.958 2.4 4.1

The data in Table 9 indicated that all models maintained R? values above 0.93, confirming strong
predictive relationships between sensor-derived features and bridge load capacity. For short-span
bridges, the GBM slightly outperformed the RF by 0.4% in R?, while for long-span configurations, the
DNN achieved comparable accuracy to ensemble models but exhibited greater instability in
residual patterns.

To determine whether these performance differences were stafistically significant, a one-way
ANOVA was conducted on the RMSE values across models. Results (F = 10.84, p <.01) confirmed that
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at least one model differed significantly in predictive performance. Post-hoc Tukey's Honest

Significant Difference (HSD) test revealed that both RF and GBM outperformed the DNN (p < .05),

whereas the difference between RF and GBM was statistically insignificant (p = .14). This suggested

that ensemble methods—while similar in average performance—were more consistent under
varying environmental and structural contexts.

Table 10:ANOVA Summary for Comparative Model Performance (RMSE as Dependent

Variable)

Source of Variation SS df MS F Sig. (p)
Between Models 212.43 2 106.22 10.84 <.01
Within Models 879.56 90 9.77 — —

Total 1091.99 92 — — —

An addifional comparative analysis was conducted between real-time sensor models (trained on
five-minute inferval data) and aggregated models (trained on hourly averages). The real-time
models demonstrated superior responsiveness and predictive precision. The Random Forest and
GBM models frained on continuous data streams reduced RMSE values by 6-9% compared to those
tfrained on aggregated historical datasets.

Table 11:Perfformance Comparison Between Real-Time and Aggregated Data Training

Schemes
MAE RMSE Improvement Over
Model Type Data Input Type (kN) (kN) R? AZgregaied (%)
Random Forest (RF) Real-time (5-min) 12.4 18.1 0.958 +8.7
Random Forest (RF) ~ A99r€gated (1= 145 198 0946 —
hour)
Gradient Boosting . .
(GBM) Real-fime (5-min) 13.8 19.6 0.951 +6.2
Gradient Boosting Aggregated (1- .
(GBM) hour) 14.7 20.9 0.942
Deep Neural Network oo 1 ime (5-min) 167 234 0932 +59
(DNN)
Deep Neural Network Aggregated (1- .
(DNN) hour) 17.8 24.9 0.920

The findings from Table11 confirmed that data granularity and sensor synchronization quality had a
greater influence on predictive variance than the algorithmic structure itself. The real-tfime datasets
captured micro-level load fluctuations that were otherwise smoothed out in hourly averages,
enhancing the capacity of ensemble models to detect fransient stress behaviors.

Further, ensemble averaging, which combined RF and GBM predictions through weighted blending,
produced the most stable and generalizable outcomes, yielding an aggregate R? of 0.962 and
reducing residual skewness by 11% compared to standalone models. This demonstrated that hybrid
integration of algorithms effectively mitigated bias arising from feature-level dominance and
environmental noise.

In brief, the comparative evaluation established that while Gradient Boosting achieved slightly
higher accuracy for localized predictions and Deep Neural Networks performed best for highly
nonlinear multi-span systems, Random Forest remained the most balanced and reliable approach.
The statistical testing results confirmed that differences between the ensemble methods were not
significant at the 95% confidence level, reinforcing the robustness of ensemble-based frameworks
for real-time bridge load prediction across diverse conditions. The findings collectively supported the
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conclusion that hybrid data integration—merging real-time sensor inputs with historical patterns—
maximized predictive stability and operational reliability in dynamic bridge monitoring systems.
Correlation Analysis
A comprehensive correlation and feature sensitivity analysis was conducted to determine the
relative contribution of each sensor-derived variable to the predictive estimation of bridge load
capacity. This phase of the analysis was designed to quantify how changes in structural and
environmental features influenced model outputs, and fo identify which parameters most strongly
governed load-bearing predictions within the ensemble learning framework. The analysis utilized
Pearson correlation coefficients, normalized feature importance scores, and variance-based
sensitivity indices derived from the Random Forest model, which previously demonstrated the most
consistent validation performance.
Pearson correlation analysis revealed that strain, deflection, and vibration frequency exhibited the
strongest linear associations with load capacity, while environmental variables such as temperature
and humidity showed moderate but statistically significant relationships. The correlation coefficients
(Table 4.8) indicated that strain (r=0.88, p <.001) was the dominant predictor, followed by deflection
(r=10.80, p <.001) and vibration frequency (r = 0.74, p < .01). Temperature and humidity, while less
directly correlated, contributed indirectly by moderating strain variations under thermal expansion
or moisture-related material effects.

Table 12:Pearson Correlation Matrix Among Key Variables (N = 205,486)

Variable Load Capacity Strain Deflection Vibration Freq. Temperature Humidity
Load Capacity 1.00 0.88***  0.80*** 0.74** 0.63** 0.42*
Strain — 1.00 0.7 6*** 0.69** 0.52** 0.31*
Deflection — — 1.00 0.71** 0.48* 0.27*
Vibration Frequency — — — 1.00 0.36* 0.22
Temperature — — — — 1.00 0.49*
Humidity — — — — — 1.00

*Note: *p < .05; **p < .01; **p <.001.

The correlation structure demonstrated a strong multivariate interdependence among structural
variables. Strain and deflection exhibited a shared variance of approximately 58%, confirming that
both parameters reflected complementary aspects of bridge deformation under load. However, the
moderate correlation between temperature and strain suggested the presence of environmental
modulation, particularly in steel bridges where thermal expansion effects were more pronounced.
Feature Sensitivity

The feature sensitivity analysis used permutation importance and variance-based contribution
indices to assess the impact of each variable on model predictions. The findings showed that strain
contributed 35.7% of the total predictive variance, followed by deflection (24.3%) and vibration
frequency (18.1%). Temperature accounted for 13.2%, while humidity and sensor noise explained
only minor portions of variance. These results aligned with the physical interpretation that mechanical
response variables exert stronger predictive control than environmental covariates, though the latter
remain important for long-term drift correction.

Table 13:Feature Sensitivity and Relative Importance in Predictive Modeling

Feature Normalized Importance (%) Sensitivity Index (AY/AX %) Effect Type
Strain (ue) 35.7 9.0 Strong positive
Deflection (mm) 24.3 6.8 Positive linear
Vibration Frequency (Hz) 18.1 5.5 Nonlinear
Temperature (°C) 13.2 3.8 Moderating
Humidity (%) 5.1 1.6 Weak linear
Sensor Noise Index 3.6 1.0 Negative
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The sensitivity analysis confirmed that a 5% increase in strain readings corresponded to an
approximate 9% change in predicted load capacity, emphasizing the model’s responsiveness to
deformation signals and the critical importance of accurate strain sensor calibration. Vibration
frequency displayed nonlinear effects, where changes beyond £10% in measured frequency led to
disproportionately higher prediction variance, indicating complex modal inferactions in bridge
dynamics.
Bridge-Type Comparative Sensitivity
Further comparative sensitivity testing across steel, concrete, and composite bridges revealed
material-dependent predictive behaviors. The results showed that steel bridges were markedly more
sensitive to tfemperature and vibration inputs, while concrete bridges relied more heavily on strain
and deflection features.

Table 14:Comparative Feature Sensitivity Across Bridge Material Types

Steel Bridges (AY/AX Concrete Bridges (AY/AX Composite Bridges (AY/AX

Feature %) %) %)

Strain (ueg) 8.4 9.1 8.7

Deflection (mm) 6.2 7.5 6.8

Vibration Frequency 6.7 54 59
(Hz)

Temperature (°C) 4.5 3.1 3.7

Humidity (%) 2.0 1.4 1.6

The cross-material findings indicated that steel bridges exhibited higher sensitivity to environmental
changes, consistent with their thermal expansion coefficients and material flexibility. In contrast,
concrete bridges demonstrated more stable responses, though they were more influenced by
mechanical deformation variables such as strain and deflection. Composite structures presented
intfermediate sensitivity, reflecting hybrid mechanical behavior.

Residual interaction plots (not shown here) confirmed that the combined influence of strain and
temperature yielded nonlinear response surfaces, reinforcing the advantage of ensemble learning
models in capturing such multivariate dependencies.

Real-Time Model Integration and Predictive Insights

The integration of predictive models with real-time sensor data was carried out to evaluate
operational feasibility, latency, and predictive reliability under simulated field conditions. The testing
framework replicated live monitoring environments by streaming data from virtual sensor nodes that
simulated strain, vibration, temperature, and deflection readings at five-minute intervals. The
objective was to determine how effectively trained machine learning models—particularly the
Random Forest (RF) and Gradient Boosting (GBM) models—could sustain prediction accuracy during
dynamic load variations and fransient stress events.

System Performance and Latency Findings

The real-time deployment environment demonstrated high operational stability, with negligible
prediction lag and efficient inference throughput. The average latency per prediction was recorded
at 1.84 seconds, well below the two-second target for real-time monitoring applications. The system
maintained a 99.1% uptime across all test cycles, confirming that the models could operate
continuously without significant computational bottlenecks.

Table 15 summarizes the key system-level performance indicators recorded during live stream
integration testing.

26


https://jsdp-journal.org/index.php/jsdp/index
https://doi.org/10.63125/v5y21788

Journal of Sustainable Development and Policy
Volume 04, Issue 03 (2025)
Page No: 01 -37
DOI:10.63125/v5y21788
Table 15:System Performance Metrics During Real-Time Model Integration

Parameter Random Forest Gradient Boosting Deep Neural Network
(RF) (GBM) (DNN)
Average Pre?;;:hon Latency 182 197 0 48
System Uptime (%) 99.3 98.9 97.6
Throughput (Predictions/min) 32.7 29.5 25.4
Memory Utilization (%) 61.8 68.1 74.3
CPU Utilization (%) 54.2 59.4 65.7

The results confirmed that the RF model achieved the optimal tfrade-off between computational
efficiency and responsiveness, with the lowest latency and most stable throughput rate. The GBM
model demonstrated comparable reliability, though at a slightly higher processing cost, while the
DNN model incurred increased memory consumption and slower inference rates due to complex
layer computations.

Predictive Accuracy Under Dynamic Loading

Performance testing under simulated dynamic load conditions revealed that all three models
maintained accuracy within acceptable thresholds, even during sudden changes in load
sequences or temperature spikes. The RF model achieved an average Mean Absolute Percentage
Error (MAPE) of 3.6%, while the GBM model recorded 4.1%, indicating strong stability under stress
variability. The DNN model’'s performance fluctuated slightly, with an average MAPE of 5.3%,
especially during peak load events.

Table 16:Predictive Accuracy During Simulated Real-Time Load Events

Mean Absolute Error RMSE MAPE , Error Stability Index (o/p
Model Type (kN) (kN) (%) R %)
Random Forest (RF) 12.7 18.6 3.6 0.957 2.1
Gradient Boosting (GBM) 13.2 19.4 4.1 0.951 2.3
Deep Neural Network
(DNN] 15.9 22.8 53 0.936 2.6

Table 16 presents the predictive performance metrics for each model under real-time load
fluctuation testing. The findings demonstrated that both ensemble-based models retained predictive
integrity across variable stress patterns and environmental fluctuations. The error stability index—a
measure of prediction variance—remained below 2.5% for ensemble models, confirming consistent
performance even during transient load disturbances.

Model Retraining and Drift Reduction

Continuous retraining using a sliding-window approach (seven-day refresh interval) significantly
mitigated temporal drift, improving prediction accuracy by approximately 6.8% over static models
that lacked retraining mechanisms. This adaptive strategy allowed the models to capture evolving
material behavior and environmental changes, enhancing long-term prediction reliability. Table 17
summarizes the comparison between static and adaptive retraining models, demonstrating notable
improvements in model stability and error reduction.
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Table 17:Effect of Continuous Model Retraining on Predictive Accuracy

.. MAE RMSE ,  Drift Accumulation Improvement
Model Type Training Strategy (kN) (kN) R Rate (%) (%)
Random Forest g od parameters 135 19.8 0.945 42 _
(Static)
Random Forest Sliding Window
(Adaptive (7-Day) 12.6 18.5 0.958 1.9 +6.8
Gradient BOosting b o parameters 141 204 0.940 4.6 —
(Static)
Gradient Boosting  Sliding Window
(Adapfive) (7-Day) 13.2 19.1  0.952 2.0 +6.3

The retfraining results validated the effectiveness of adaptive ensemble learning, where periodic
updates maintained predictive alignment with real-world bridge performance data. Drift
accumulation—measured as incremental prediction bias over time—was reduced by more than half
for retrained models, underscoring the necessity of dynamic model maintenance for real-time
deployment.

Decision-Support and Early Warning Capability

A decision-support simulation was performed to assess the models’ ability to issue early warnings
during load exceedance or abnormal stress patterns. The RF model correctly flagged 97.2% of
threshold exceedance events, while the GBM model achieved 95.6% detection accuracy. The DNN
model achieved 93.4%, with slightly delayed response times during overlapping vibration events.
Table 18 illustrates the models’ early warning and event detection performance during simulated
overload and fatigue scenarios.

Table 18:Model-Based Early Warning and Load Exceedance Detection

Model Tybe True Positive False Positive Detection Missed Overall Detection
ypP Rate (%) Rate (%) Latency (s) Events (%) Accuracy (%)
Random Forest 97.2 2.1 1.9 0.7 98.1
(RF)
Gradient Boosting
(GBM) 95.6 2.4 2.2 2.0 96.3
Deep Neural 93.4 3.5 2.7 3.1 94.2

Network (DNN)

The event detection analysis confirmed that ensemble-based models were highly responsive to early
stress anomalies and provided near-instantaneous alerts. The Random Forest model was particularly
efficient in minimizing both false alarms and missed detections, proving valuable for proactive bridge
management applications.

DISCUSSION

The study demonstrated that ensemble machine learning algorithms—specifically Random Forest
(RF) and Gradient Boosting (GBM)—delivered superior accuracy and stability in predicting bridge
load capacity when trained on real-fime sensor data, achieving coefficients of determination (R?)
of approximately 0.95 or higher with minimal variance across validation folds. This level of predictive
reliability exceeds that reported in earlier research. For instance, Tyralis et al. (2021) developed a
deep-learning framework using only bridge image data and achieved moderate accuracy but
noted limitations due to the lack of structural health monitoring (SHM) inputs. Similarly, Asghari et al.,
(2022) employed condition rafings rather than contfinuous sensor variables in a network-level
deterioration forecasting model, reporting accuracy values in the low 0.90s without explicitly
addressing real-time load prediction. In contrast, the present study integrated multiple sensor
modalities—including strain, vibration, temperature, and deflection data—collected at five-minute
intervals, demonstrating that ensemble algorithms consistently outperformed single-model deep
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neural networks (DNNs) in both error magnitude and robustness. The finding that the Random Forest
model achieved the lowest residual variance aligns with prior research in structural asset modeling,
which reported over 93% accuracy in condition prediction. However, this work advances the field
by extending machine learning applications from general condition classification to quantifiable
load-carrying capacity estimation. Incorporating environmental and dynamic covariates increased
predictive accuracy by approximately 10% compared with models using structural features alone—
a confrast to many earlier frameworks, such as Zhang et al. (2022)’'s load-capacity model, which
relied on geometric and limited condition data. Overall, the results establish a new benchmark for
load-capacity prediction, characterized by improved interpretability, accuracy, and real-time
operational relevance.
The analytical process encompassed more than 200,000 time-series instances spanning 15 key sensor
variables collected from bridges across multiple climatic zones. Data preparation included missing-
value imputation, interquartile range (IQR) outlier filtering—removing approximately 3.8% of
anomalous records and reducing noise variance by roughly 7%—followed by normalization and
temporal synchronization. This methodological rigor distinguishes the study from earlier research
employing limited datasets or static inventory listings. For example, the New Zealand rail-bridge
analysis focused on moving-load behavior with only about 5,000 training instances emphasizing axle
spacing, while the FHWA deterioration model incorporated condition ratings rather than confinuous
deformation metrics. Stratified analysis revealed that steel bridges exhibited higher strain and
vibration variability, whereas tropical-zone bridges experienced greater environmental fluctuations,
necessitating advanced feature engineering, including interaction and polynomial terms, to stabilize
inputs. These procedures address gaps identified in recent literature, such as Dutta et al.(2022), who
highlighted inadequate feature engineering and time-series integration across bridge modeling
research. By emphasizing harmonized, high-frequency sensor data, the study confirms that data
quality, temporal resolution, and environmental diversity are equally as influential as algorithmic
selection in determining predictive reliability—an insight rarely quantified in prior bridge load-
prediction studies.
Model calibration employed an 80/20 training-validation splif, five-fold cross-validation, and inclusion
of environmental covariates in feature engineering. The Random Forest algorithm achieved mean
absolute error (MAE) = 12.4 kN, root mean square error (RMSE) = 18.1 kN, and R? = 0.958 with standard
deviation across folds below 2.1%. Gradient Boosting and DNN models followed closely but with
slightly higher errors and variance. These results outperform many earlier studies, such as Alam et al.,
(2023), which did not report variance metrics, and the capacity-prediction framework that focused
on older, non-sensor-equipped structures. Inclusion of confinuous sensor data and ensemble
modeling provided improved calibration robustness and reduced model overfitting, evidenced by
standard deviations below 2.5%. Environmental covariates, including temperature and vibration,
enhanced predictive accuracy by approximately 10%, confirming observations in structural health
monitoring research. In comparison, earlier models such as AlJame et al. (2020) achieved high
accuracy but lacked comprehensive cross-validation and variance analysis. The present study
contributes to the field by demonstrating that ensemble methods, supported by diverse, real-time
sensor datasets, yield high generalization capacity and stability, establishing a performance
benchmark for predictive modeling of bridge load capacity.
A comparative evaluation of span categories and input data types revealed that Gradient Boosting
slightly outperformed Random Forest for short-span bridges (R? = 0.961 vs. 0.957), while DNNs
performed marginally better for complex, multi-span structures (R? = 0.958 for long spans). However,
ANOVA and Tukey HSD tests indicated no statistically significant differences between RF and GBM
(p = .14), while both models significantly surpassed DNN performance (p < .05). Real-time data input
improved RMSE by approximately 6-9% compared with aggregated hourly datasets, emphasizing
the impact of high-frequency data on predictive precision. These findings expand upon earlier
studies, such as the New Zealand rail-bridge analysis, which demonstrated benefits from larger
datasets but did not assess model comparison statistically. Likewise, the review by Algahtani et al.,
(2022) identified the absence of hypothesis testing and data-resolution analysis as methodological
limitations in previous machine learning applications for bridge engineering. The ensemble-
averaged model that combined RF and GBM outputs achieved R? = 0.962 and reduced residual
skewness by roughly 11%, suggesting that ensemble aggregation enhances stability and accuracy—
an approach supported in broader engineering analytics but rarely quantified for bridge load
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prediction. Overall, the results underscore that model selection, data granularity, and sensor
synchronization collectively determine predictive robustness, reinforcing ensemble learning and real-
time data integration as the most effective strategies for precise, interpretable bridge load-capacity
modeling.
CONCLUSION
The study titled “Predictive Modeling of Bridge Load Capacity Using Machine Learning and Real-
Time Sensor Data” was conducted with the cenfral objective of developing an intelligent, data-
driven framework capable of estimating and monitoring bridge load capacity through the
integration of advanced machine learning algorithms and contfinuous sensor-based measurements.
By leveraging Internet of Things (loT)-enabled data streams from strain gauges, vibration sensors,
temperature monitors, and deflection meters, the research established a predictive model that
could guantify structural responses under varying environmental and operational conditions with
high temporal precision. The study applied multiple algorithms—Random Forest, Gradient Boosting,
and Deep Neural Networks—to over 200,000 time-series data points obtained from 48 bridges across
diverse climatic zones, and it found that ensemble learning techniques consistently outperformed
single-model approaches in both predictive accuracy and stability. The Random Forest model
achieved the lowest mean absolute error (12.4 kN) and the highest coefficient of determination (R?
= 0.958), outperforming deep learning models that required heavier computation and exhibited
greater sensitivity to noise. Moreover, incorporating environmental variables such as temperature
and vibration frequency enhanced model accuracy by nearly 10%, underscoring the
inferdependence between mechanical and environmental factors in real-world bridge
performance. Sensitivity and correlation analyses revealed that strain was the most influential
predictor of load capacity (r = 0.88), followed by deflection and vibration frequency, while
temperature served as a moderating factor influencing thermal expansion and stress variability—
particularly in steel structures. The real-time deployment of the model within a simulated monitoring
environment demonstrated robust operational reliability, achieving prediction latency below two
seconds and early warning detection accuracy exceeding 97%, thereby validating its suitability for
real-time infrastructure management. When compared to static datasets orimage-based condition
assessments, this research distinguished itself by combining continuous sensor inputs, adapfive
retraining, and cross-validation to minimize temporal drift and enhance generalization. These findings
collectively confirmed that predictive modeling using ensemble machine learning integrated with
real-time sensor data represents a fransformative advancement in structural health monitoring,
offering a proactive and scalable solution for bridge maintenance, risk assessment, and decision-
support systems within modern intelligent transportation infrastructure frameworks.
RECOMMENDATIONS
Based on the outcomes of the study Predictive Modeling of Bridge Load Capacity Using Machine
Learning and Real-Time Sensor Data, several key recommendations are proposed to enhance the
future application of intelligent systems in structural health monitoring and bridge management.
First, the integration of hybrid modeling frameworks that combine physics-based and machine
learning approaches should be prioritized. While ensemble algorithms such as Random Forest and
Gradient Boosting have shown superior predictive performance, incorporating finite element (FE)
simulations and physics-informed machine learning (PINN) can improve both interpretability and
reliability. This hybridization ensures that predictive models not only fit empirical data but also adhere
to the underlying structural mechanics of bridge behavior. Future research should therefore
emphasize the co-development of physics-guided data-driven algorithms for dynamic load
capacity prediction.
Second, the enhancement of real-time data acquisition systems is crucial for achieving consistent
accuracy in predictive modeling. Standardized sensor networks with synchronized data collection—
covering strain, vibration, deflection, and environmental factors—should be implemented across
bridge infrastructures. Adoption of Infernet of Things (loT) and edge computing fechnologies can
reduce latency and enable faster data processing, allowing for near real-time decision-making.
Data harmonization protocols and interoperability standards must be established to ensure the
compatibility of diverse sensor devices and data management systems across different jurisdictions
and bridge types. Third, data preprocessing and feature engineering need greater standardization
and automation. Many prior studies have demonstrated that model performance is highly
dependent on data quality. Future implementatfions should employ advanced filtering,
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normalization, and featfure exiraction techniques—such as wavelet transformation and
autoencoders—to handle noisy, high-frequency data. Establishing standardized frameworks for data
cleaning, synchronization, and quality validation will improve model transferability and enable
comparative benchmarking across studies and regions.Fourth, environmental and operational
variables should be systematically incorporated info predictive models. The study showed that
including parameters such as temperature, humidity, and fraffic vibratfion improved prediction
accuracy by nearly 10%. Consequently, future predictive models should employ adaptive algorithms
capable of automatically normalizing environmental effects, ensuring that results remain stable
under varying climatic and operational conditions. Such inclusivity will enhance the global
applicability and generalization of bridge load prediction models. Fifth, the creation of open-access
benchmark datasets and collaborative research networks is recommended to facilitate model
validation and reproducibility. National transportation authorities and research institutions should
develop shared databases of long-term, high-resolution sensor data representing diverse bridge
typologies and environmental conditions. These repositories would serve as a foundation for
comparing algorithms, validating predictions, and advancing international collaboration in
predictive infrastructure analytics.
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