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Abstract 
Vehicle-to-Infrastructure (V2I) communication has emerged as a critical component of intelligent 
transportation systems designed to enhance roadway safety, operational efficiency, and real-time decision-
making across highway networks. This empirical study examines the extent to which V2I-enabled information 
exchange—particularly involving roadside units, traffic management centers, and connected vehicle systems—
contributes to measurable reductions in traffic incidents across major U.S. highways. Drawing on multi-state 
datasets that integrate incident logs, roadway sensor feeds, and V2I communication records, the analysis 
assesses correlations between V2I deployment density and decreases in crash frequency, severity, and secondary 
collisions. Advanced statistical modeling and spatiotemporal analysis reveal that highways with mature V2I 
infrastructure experience significantly improved driver hazard awareness, reduced response lag for incident 
management teams, and smoother traffic flow patterns under high-volume conditions. Additionally, the findings 
highlight regional disparities in V2I effectiveness influenced by infrastructure investment levels, network 
design, and operational integration with legacy systems. The study contributes to the growing body of empirical 
evidence demonstrating the tangible safety benefits of connected transportation ecosystems and underscores the 
importance of policy alignment, sustained infrastructure funding, and interoperable communication standards 
for maximizing V2I’s impact on national roadway safety outcomes. Beyond its empirical contributions, this 
study reinforces growing national and international evidence supporting the safety benefits of connected 
transportation ecosystems. It highlights the critical need for continued infrastructure funding, harmonized 
policy frameworks, and interoperable communication standards to ensure that V2I technologies operate 
cohesively across jurisdictions and platforms. Ultimately, the expanded insights offered here illustrate how 
robust V2I deployment not only mitigates crash risks but also strengthens the overall resilience and efficiency 
of the transportation network, positioning connected vehicle technologies as an essential component of future 
roadway safety strategies. 
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INTRODUCTION 
Vehicle-to-Infrastructure (V2I) communication refers to the bidirectional exchange of data between 
vehicles and roadway infrastructure, typically facilitated through dedicated short-range 
communication (DSRC), cellular-V2X (C-V2X), and emerging 5G-enabled networks (Yao et al., 2023). 
In transportation science, V2I is broadly defined as a subsystem of the larger Vehicle-to-Everything 
(V2X) architecture, which also includes Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and 
Vehicle-to-Network (V2N) communication (Shahriar et al., 2023). V2I communication supports real-
time data dissemination related to roadway conditions, traffic signal timing, hazard alerts, and 
environmental sensing, enabling enhanced situational awareness for both drivers and automated 
driving systems (Gozalvez et al., 2012). Within intelligent transportation systems (ITS), V2I is 
recognized as a foundational technology that enhances roadway efficiency and reduces human-error-
related risks by supporting cooperative perception, adaptive traffic control, and coordinated incident 
response (Borba et al., 2023). Internationally, governmental agencies and roadway authorities define 
V2I as a cyber-physical integration framework that allows infrastructure operators to continuously 
monitor traffic states and provides vehicles with actionable information that supports safe operation 
under dynamic environmental conditions (Ben Ameur et al., 2025). Standardization of V2I 
communication is pursued through global organizations such as ETSI, IEEE, ISO, and ITU, which have 
advanced interoperability protocols to support cross-border transport safety (Zhou et al., 2025). From 
an engineering perspective, V2I systems incorporate roadside units, sensors, signal controllers, and 
edge computing devices to facilitate low-latency and high-reliability exchanges of safety-critical data 
(Rezaee Jordehi et al., 2024). As a technical domain, V2I communication is widely viewed as an essential 
component of modern transportation networks that seeks to stabilize traffic flow, reduce uncertainty 
in vehicle maneuvers, and strengthen the alignment between vehicle behavior and roadway 
management strategies. Collectively, these definitions underline the conceptual and functional scope 
of V2I communication within contemporary transportation research. 
 

Figure 1: Vehicle-to-Infrastructure (V2I) communication  

 
 
The international significance of V2I communication is reflected in the substantial investments made 
by industrialized economies, emerging markets, and multinational transportation research consortia to 
improve roadway safety across diverse geographic settings. The European Union has promoted 
cooperative ITS and cross-border V2I pilots under initiatives such as C-ROADS and the European ITS 
Directive, which emphasize harmonized safety standards and unified data exchange protocols (Rezaee 
Jordehi et al., 2024). Japan’s Smartway program represents one of the earliest and most mature national 
deployments of V2I infrastructure, integrating beacons, sensors, and digital road maps into roadway 
systems to enhance collision avoidance and congestion management (Jordehi et al., 2025). Similar 
developments have been documented across South Korea, Singapore, and China, where large-scale 
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investments in 5G-based V2X technologies have produced dense networks of urban and interurban 
roadside units supporting vehicle automation and cooperative traffic control (Yi et al., 2024). In North 
America, the U.S. Department of Transportation has conducted extensive V2I testing through 
connected vehicle pilots in states such as Michigan, Florida, and Wyoming, producing evidence on the 
safety effects of real-time alerts for adverse weather, work zones, and roadway obstructions (Adnan 
Yusuf et al., 2024). Canada has also expanded V2I testing corridors along major freight routes to support 
cooperative safety and real-time monitoring of winter driving conditions. Across the Middle East, 
countries such as the United Arab Emirates and Qatar have incorporated V2I communication into 
national smart mobility strategies to manage rapidly increasing traffic volumes and support integrated 
traffic management centers (Khan et al., 2025). International transport organizations, including the 
World Road Association and the International Transport Forum, emphasize that V2I communication 
supports risk reduction by enabling continuous monitoring of roadway conditions across borders with 
heterogeneous driving behaviors and environmental constraints. These global initiatives illustrate the 
widespread relevance of V2I communication to roadway safety in heterogeneous international 
transportation landscapes. 
 

Figure 2: Vehicle-to-Infrastructure (V2I) communication  

 
 
Traffic incidents constitute a major global public safety concern, with the World Health Organization 
reporting more than 1.3 million fatalities annually from road traffic crashes and tens of millions of 
injuries. Human error remains a predominant contributing factor in roadway incidents, accounting for 
behaviors such as delayed reaction times, misperception of hazards, distraction, and misjudgment of 
roadway conditions (Dey et al., 2016). Environmental variables including rain, snow, fog, and ice 
significantly increase crash risk by reducing visibility and altering vehicle dynamics (Khan et al., 2025). 
Infrastructure deficiencies further exacerbate incident likelihood, especially in settings lacking adaptive 
signal control, real-time signage, or roadway monitoring systems. Secondary crashes arising from 
congestion or unexpected obstacles contribute to additional risks for both drivers and first responders. 
The economic costs associated with traffic incidents are substantial, with countries experiencing annual 
losses representing 2–3% of GDP due to medical expenses, property damage, congestion delays, and 
lost productivity. Conventional safety interventions such as signage, speed enforcement, and 
behavioral campaigns contribute to mitigation, although many crashes occur under conditions where 
human drivers receive insufficient or delayed information. Automation and sensor-based systems have 
improved vehicle awareness, yet roadway infrastructure continues to lag in many regions, limiting the 
capacity for coordinated safety responses. In this context, V2I communication is recognized in 
transportation safety research as a systemic technological mechanism that addresses challenges related 
to information delays and coordination gaps by facilitating rapid data exchange between vehicles and 
infrastructure operators (Dey et al., 2016). Understanding the relationship between V2I deployment 
and traffic incident reduction thus becomes central to examining how connected road ecosystems 
support global public safety objectives. 
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Research on the mechanisms through which V2I communication contributes to roadway safety 
emphasizes the importance of real-time hazard dissemination, cooperative traffic control, and 
enhanced situational awareness supported by infrastructure intelligence. V2I systems allow vehicles to 
receive immediate alerts about upstream incidents, work zones, lane closures, and adverse weather 
conditions, enabling drivers to adjust behaviors earlier than would be possible using visual cues 
alone(Abdulla &Ibne, 2021; Borba et al., 2023). Studies have demonstrated that timely alerts reduce the 
probability of rear-end collisions, especially under high-density traffic conditions where reaction time 
is a critical safety determinant (Habibullah & Foysal, 2021; Sanjid & Farabe, 2021). Infrastructure-to-
vehicle communication supports adaptive speed harmonization, assisting vehicles in maintaining 
stable headways while reducing speed variance, which is associated with reduced crash likelihood. 
Under adverse weather conditions, V2I enables dissemination of friction estimates and visibility 
assessments, improving maneuver stability and reducing the frequency of loss-of-control events 
(Sarwar, 2021; Musfiqur & Saba, 2021; Zhou et al., 2025). In addition, infrastructure operators benefit 
from improved situational awareness through integration of sensor data, video analytics, and edge 
computing, which enables rapid detection of abnormal traffic patterns and shortens incident detection 
time. Cooperative signal control facilitated by V2I has been shown to reduce intersection crashes by 
optimizing phase timing according to real-time traffic demands. Automated lane-level guidance 
provided through infrastructure communication also supports improved trajectory control in 
connected and automated vehicles, reducing hazardous lateral maneuvers (Omar & Rashid, 2021; Md. 
Redwanul et al., 2021; Jordehi et al., 2024). Collectively, these mechanisms highlight the 
multidimensional role of V2I systems in reducing the factors that contribute to both primary and 
secondary traffic incidents, reflecting a comprehensive framework in which communication, sensing, 
and control are interlinked to support roadway safety (Tarek & Praveen, 2021; Zaman & Momena, 
2021). 
Empirical research examining the effects of V2I deployment on roadway safety indicates consistent 
associations between V2I-enabled infrastructure and reductions in crash frequency, crash severity, and 
secondary incident formation. Studies analyzing U.S. connected vehicle pilot deployments have 
reported measurable decreases in hard braking events, rear-end risk indicators, and lane-departure 
precursors among vehicles equipped with V2I safety applications(Rezaee Jordehi et al., 2025; Rony, 
2021; Shaikh & Aditya, 2021). Empirical evaluations in Japan have shown that V2I-based hazard 
warning systems significantly reduce collision risks on expressways by improving driver response time 
under high-speed conditions (Yusuf et al., 2024; Sudipto & Mesbaul, 2021; Zaki, 2021). European 
assessments of cooperative ITS corridors likewise report reductions in crash-related congestion and 
improved compliance with variable speed limits communicated through V2I signage. Simulation-
based studies have further demonstrated that integrating V2I into traffic networks lowers crash 
probabilities under mixed traffic conditions by stabilizing flow dynamics. Under winter conditions, V2I 
dissemination of road surface conditions has been associated with reductions in weather-related 
incidents across Canadian and Scandinavian roadway networks (Hozyfa, 2022; Khan et al., 2025; Al 
Amin, 2022). Research also shows that incident detection time decreases significantly in V2I-equipped 
networks, reducing secondary crash exposure. Additional findings indicate that V2I supports 
improved work-zone safety by providing early alerts that reduce vehicle speed variance and lane-
change conflicts. While methodologies vary across studies—including observational crash analyses, 
connected vehicle telemetry assessments, and controlled testbed experiments—results consistently 
highlight meaningful reductions in hazardous driving events attributable to V2I communication (Dey 
et al., 2016; Arman & Kamrul, 2022; Mohaiminul & Muzahidul, 2022). These empirical findings 
reinforce the importance of analyzing V2I deployment patterns across U.S. highway networks to 
understand how communication-enabled infrastructure influences roadway safety outcomes under 
diverse operating conditions (Omar & Ibne, 2022; Sanjid & Zayadul, 2022).  
The U.S. highway system presents unique characteristics that influence the design, deployment, and 
operational performance of V2I technologies. The national roadway network covers over 4 million 
miles, including urban freeways, rural interstates, and arterial corridors with varying levels of traffic 
density, geometric design, and environmental exposure. High-volume freight corridors such as the 
Interstate-80 and Interstate-95 systems require continuous monitoring due to congestion, long-distance 
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travel patterns, and elevated heavy-vehicle proportions, which contribute to complex incident 
formation dynamics (Hasan, 2022; Mominul et al., 2022; Zhou et al., 2025). Rural areas, which constitute 
a large portion of the U.S. highway network, experience higher fatal crash rates due to high operating 
speeds, extended emergency response times, and limited surveillance infrastructure. Weather 
variability across regions—including snow in the Midwest, hurricanes in the Southeast, and fog along 
the West Coast—introduces additional complexity to highway safety (Rabiul & Praveen, 2022; Farabe, 
2022). V2I deployment in the United States is progressing through federal pilot programs, state DOT 
initiatives, and local smart mobility corridors equipped with roadside units, advanced traffic 
management systems, connected signal controllers, and environmental sensing stations (Roy, 2022; 
Rahman & Abdul, 2022). States such as Michigan, Florida, and California have led early deployments, 
while others are integrating V2I through regional transportation planning frameworks. Variability in 
funding, infrastructure age, cybersecurity preparedness, and communication technology choice 
influences the performance of V2I systems across states (Razia, 2022; Zaki, 2022). Furthermore, the 
coexistence of legacy roadway systems with emerging automated vehicle technologies requires 
synchronization of data exchange between vehicles and traffic management centers. The characteristics 
of the U.S. highway network thus present an analytically rich context for evaluating the relationships 
between V2I infrastructure deployment and measurable reductions in traffic incidents, particularly in 
relation to spatial, environmental, and operational heterogeneity (Maniruzzaman et al., 2023; Kanti & 
Shaikat, 2022). 
The increasing availability of connected vehicle telemetry, infrastructure sensor data, and multi-state 
crash databases provides a foundation for systematically examining V2I effectiveness across U.S. 
highway networks. Transportation researchers emphasize that multi-source data integration is 
essential for quantifying how V2I systems influence event frequency, severity, and spatial distribution 
(Arif Uz & Elmoon, 2023; Sanjid, 2023; Xiang et al., 2022). Highway incident logs, probe vehicle data, 
and environmental sensing records enable detailed spatiotemporal modeling of crash conditions and 
allow researchers to assess how communication-enabled infrastructure affects driver behavior under 
real-world dynamics (Sanjid & Sudipto, 2023; Tarek, 2023). Studies highlight significant regional 
variation in safety performance, illustrating that V2I deployment interacts with roadway geometry, 
weather conditions, and traffic intensity to shape incident probabilities. Within applied research, 
evaluating V2I-related safety effects supports understanding of how cooperative perception and 
communication between vehicles and infrastructure influence roadway operational states (Shahrin & 
Samia, 2023; Muhammad & Redwanul, 2023). Multi-state empirical analyses across the United States 
also reflect differing levels of technological adoption and infrastructure modernization, providing 
opportunities to investigate how deployment density correlates with incident reduction across varied 
highway classifications (Muhammad & Redwanul, 2023; Razia, 2023). Furthermore, research shows 
that connected corridors equipped with early warning systems can alter driver response patterns, 
reducing abrupt maneuvers and contributing to smoother speed distributions, which have been linked 
to crash risk mitigation (Srinivas & Manish, 2023; Sudipto, 2023). As a growing body of transportation 
literature focuses on the integration of sensor-based infrastructure and communication-enabled safety 
systems, the empirical study of V2I communication across U.S. highways emerges as a critical domain 
for quantifying how technological enhancements support reductions in traffic incidents under diverse 
roadway and environmental conditions. This research context provides the foundation for the analysis 
undertaken in this study (Mesbaul, 2024; Zayadul, 2023). 
The primary objective of this study is to empirically investigate the relationship between Vehicle-to-
Infrastructure (V2I) communication deployment and the reduction of traffic incidents across U.S. 
highway networks through a comprehensive, data-driven analytical framework. This objective centers 
on quantifying how real-time exchanges of roadway information, hazard alerts, and traffic 
management directives delivered through V2I systems correlate with measurable changes in crash 
frequency, crash severity, and secondary event formation under diverse roadway conditions. The 
research seeks to evaluate how varying densities of roadside units, connected traffic control devices, 
and environmental sensing installations influence incident outcomes across highways characterized by 
different geometric features, traffic volumes, and regional weather patterns. By integrating large-scale 
datasets that include incident logs, roadway sensor outputs, probe vehicle telemetry, and V2I system 



Journal of Sustainable Development and Policy, September 2025, 38-81 

43 
 

activation records, the study aims to generate statistically robust insights into how communication-
enabled infrastructure contributes to safer operational conditions. An additional objective is to examine 
spatial and temporal variations in V2I effectiveness, identifying whether safety benefits differ across 
rural corridors, urban freeways, freight-heavy interstate segments, and environmentally challenging 
regions. The study also focuses on understanding how V2I-supported information dissemination 
affects driver behavior and traffic flow dynamics, particularly in relation to speed uniformity, lane-
changing patterns, and abrupt braking events that often precede crashes. By employing analytical 
techniques such as regression modeling, spatiotemporal mapping, and incident risk modeling, the 
research intends to isolate the specific infrastructural and operational attributes that amplify or 
minimize the safety effects of V2I communication. This objective-driven approach also emphasizes 
identifying measurable safety indicators that can be used by transportation agencies to evaluate the 
performance of V2I deployments along existing and planned highway corridors. Ultimately, the 
overarching objective is to develop an empirically grounded understanding of how communication-
enabled roadway systems contribute to safer driving environments across large-scale transportation 
networks, with particular focus on the operational realities of U.S. highways. 
LITERATURE REVIEW 
The literature on Vehicle-to-Infrastructure (V2I) communication and traffic incident reduction spans 
multiple domains, including transportation engineering, intelligent transportation systems, 
communication technologies, public safety analytics, human factors, and roadway operations 
management. Over the past two decades, scholars and transportation agencies have produced an 
extensive body of research examining how V2I-enabled information exchange supports safer roadway 
environments by facilitating real-time detection, monitoring, and communication of roadway hazards. 
Foundational studies focus on the conceptual evolution of connected vehicle technologies, whereas 
applied research investigates the operational effects of V2I systems on driver behavior, crash risk 
mitigation, and roadway performance. Parallel streams of work highlight the technological, 
infrastructural, and policy dimensions that influence V2I deployment across national and international 
contexts. In addition, empirical investigations increasingly utilize large-scale sensor datasets, 
connected vehicle telemetry, and simulation-based modeling to quantify how cooperative 
communication mechanisms influence crash patterns across diverse roadway environments. As U.S. 
highway networks provide a varied landscape of geometric configurations, Regional weather patterns, 
and traffic volumes, the literature offers a rich foundation for evaluating how V2I deployments 
correlate with incident frequency, incident severity, and secondary crash formation. The following 
literature review is structured to synthesize these multidisciplinary research foundations by presenting 
conceptual, technological, operational, and empirical dimensions of V2I communication with an 
emphasis on its relationship to roadway safety outcomes. The outlined sections provide a detailed map 
of existing scholarship that informs the analytical framework of this study. 
V2I Communication Systems 
Research on Vehicle-to-Infrastructure (V2I) communication systems has developed from early concepts 
of cooperative intelligent transportation systems that emphasized the importance of real-time data 
exchange between roadway infrastructure and mobile units to support safer and more efficient travel. 
Foundational studies describe V2I communication as a subsystem within the broader Vehicle-to-
Everything (V2X) architecture, enabling vehicles to interact with roadside units, traffic controllers, and 
sensor networks (Khan et al., 2019). The establishment of Dedicated Short-Range Communications 
(DSRC) provided one of the earliest communication platforms designed specifically for low-latency 
safety messaging, while later advancements such as cellular V2X (C-V2X) expanded reliability and 
communication range through enhanced spectrum utilization (Prakash et al., 2021). International 
standardization efforts by IEEE and ETSI helped establish unified message sets, security standards, and 
interoperability frameworks that guide system deployment across national transportation networks 
(Khan et al., 2019). Subsequent engineering research documented improvements in communication 
stability through edge computing and distributed sensing, which support rapid analysis of traffic 
dynamics and localized broadcast of safety-critical information. Infrastructure components such as 
roadside units, camera sensors, LiDAR-based detectors, and adaptive signal controllers became 
essential technologies enabling continuous environmental monitoring and dissemination of hazard 



Journal of Sustainable Development and Policy, September 2025, 38-81 

44 
 

messages. As transportation systems increasingly integrate cyber-physical architectures, V2I systems 
are now examined in relation to their ability to support cooperative perception and data-driven 
roadway operations (Chu et al., 2025). Across global deployments, the evolution of V2I systems 
illustrates the convergence of communication engineering, automation research, and roadway 
operations management, providing a technological foundation for empirical studies examining how 
infrastructure-supported communication shapes roadway safety outcomes. 
 

Figure 3: Vehicle-to-Infrastructure (V2I) communication systems 

 
 
A significant body of literature explores how V2I communication influences driver behavior and 
supports hazard-avoidance decision-making. Human factors research demonstrates that drivers 
respond more effectively to hazards when warnings are delivered through communication-based 
channels rather than relying solely on visual cues or environmental perception (Rehman et al., 2022). 
V2I messages reduce cognitive load by translating complex roadway conditions into actionable 
guidance, which supports shorter reaction times and minimizes abrupt maneuvering in high-risk 
situations. Behavioral studies show improvements in speed regulation, headway maintenance, and 
lane-keeping stability when drivers receive real-time infrastructure-generated advisories. Research 
focusing on adverse weather conditions reveals that infrastructure-to-vehicle alerts related to low 
visibility, icy pavement, or reduced friction enable more controlled braking and smoother acceleration 
profiles. Studies on intersection behavior demonstrate that V2I-enabled signal phase and timing (SPaT) 
information leads to more consistent deceleration patterns before traffic lights, reducing red-light 
violation risks and signal-related conflicts (Karp & Kung, 2000; Rehman et al., 2022). Human-in-the-
loop modeling further illustrates that V2I systems reduce erratic responses in mixed traffic 
environments where unpredictable human driving behaviors interact with communication-equipped 
vehicles. Researchers examining cognitive response patterns show that communication-enabled 
warnings enhance driver situational awareness under both normal and near-crash conditions by 
supplying hazard information sooner than conventional detection methods. The alignment of V2I 
messages with naturalistic driving behaviors underscores the importance of communication systems 
as behavioral stabilizers, providing continuous informational support that promotes safer operational 
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dynamics in varied roadway contexts. 
Empirical studies examining the safety impacts of V2I deployment consistently report meaningful 
reductions in crash frequency, crash severity, and secondary incident formation. Research from large-
scale connected vehicle pilot programs in the United States demonstrates that V2I-enabled hazard 
warnings reduce hard-braking events, lane-departure indicators, and surrogate safety measures 
associated with near-crash behavior. Analysis of Japan’s Smartway system shows substantial 
reductions in collision risks along expressways when drivers receive infrastructure-based warnings 
regarding congestion, lane closures, and stopped vehicles (Prakash et al., 2021). In Europe, cooperative 
ITS corridor deployments report improvements in compliance with variable speed limits and 
reductions in incident-induced congestion under V2I communication regimes. Empirical assessments 
of winter maintenance corridors in Canada demonstrate lower rates of weather-related incidents when 
V2I systems disseminate real-time surface condition and visibility information to drivers. Simulation-
based studies complement empirical findings by showing that V2I-supported speed harmonization 
reduces shockwave formation and stabilizes traffic flow, lowering the probability of multi-vehicle 
crashes in dense traffic scenarios. Work zone safety research also documents reductions in crash 
precursors when drivers receive V2I-based alerts regarding lane shifts, reduced speed zones, and 
construction hazards (Ning et al., 2014). Additional evaluations emphasize the ability of V2I systems to 
shorten incident detection time for traffic management centers, reducing exposure to secondary crash 
risks along congested corridors. These findings collectively demonstrate consistent associations 
between V2I deployment and safer roadway environments across diverse geographic, geometric, and 
environmental contexts, establishing a strong empirical foundation for analyzing the effects of 
communication-enabled infrastructure on traffic safety outcomes. 
Research examining V2I communication systems frequently identifies roadway geometry, 
environmental conditions, and traffic operational states as key moderators influencing V2I 
effectiveness. Studies show that geometric elements such as sharp curves, multilane interchanges, and 
steep grades influence the clarity of communication signals and the timing at which drivers internalize 
hazard messages, shaping overall safety performance. Weather variability is widely documented as a 
dominant moderating factor, with snow, fog, heavy rain, and high winds affecting both sensor accuracy 
and driver interpretation of V2I advisories. Research on roadway surface conditions indicates that V2I-
enabled friction estimation supports improved braking control under icy or wet conditions, reducing 
high-risk maneuvers linked to loss-of-control events (Kong et al., 2008). Traffic density also shapes V2I 
performance, as high-volume segments exhibit stronger safety benefits due to the greater influence of 
speed harmonization and cooperative traffic flow control ((Xiang et al., 2023). Studies investigating 
rural versus urban deployment patterns highlight reduced detection and communication latency in 
rural regions owing to longer distances between roadside units, although the magnitude of safety 
benefits remains significant when systems are active (Shan et al., 2022). Freight-dominated corridors 
exhibit distinct interaction patterns as heavy-vehicle dynamics influence responsiveness to speed and 
lane-change advisories, prompting researchers to examine vehicle class–specific responses. 
Environmental sensing studies also identify operational constraints related to sensor calibration, 
occlusion, and data noise; however, multiple investigations show that communication-enabled 
redundancy mitigates information gaps and supports overall system reliability (Dadashi-Rad et al., 
2020). Through these moderating factors, the literature portrays V2I systems as interacting with a wide 
range of roadway and environmental variables, illustrating the importance of context-specific 
evaluations when assessing the safety impacts of communication-based roadway technologies. 
Models Underpinning Vehicle-to-Infrastructure Interactions 
Models conceptualizing Vehicle-to-Infrastructure (V2I) interactions commonly draw from cyber-
physical systems (CPS) frameworks that describe transportation networks as integrated environments 
where computational processes and physical roadway dynamics interoperate through real-time data 
exchange. Foundational CPS studies conceptualize V2I as a layered architecture consisting of 
perception, communication, computation, and control layers, each contributing to the formation and 
transmission of safety-critical information. Within these models, roadside sensors collect 
environmental, geometric, and traffic-flow data, which are processed through edge computing nodes 
before being disseminated to vehicles through standardized message protocols (Xiang et al., 2023). The 
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CPS perspective emphasizes the need for synchrony between infrastructural sensing and vehicular 
response patterns, modeling interactions as feedback-driven loops that stabilize roadway behavior. 
Analytical models derived from CPS research illustrate how time-sensitive communication supports 
hazard detection and cooperative maneuvering, with latency models used to evaluate the 
responsiveness of V2I systems under varying traffic and environmental conditions. Predictive CPS 
models additionally simulate how roadside computing units aggregate sensor data to detect anomalies 
such as stopped vehicles, congestion buildup, or reduced surface friction, supporting timely 
instructional broadcasts. CPS-based control models also examine how V2I supports adaptive signal 
coordination, speed harmonization, and trajectory stabilization by generating optimal control inputs 
based on real-time roadway data. Through this theoretical lens, V2I interactions are conceptualized as 
coupled information–physical processes governed by continuous sensing, embedded computation, and 
bidirectional vehicular communication that collectively structure the foundational operational 
mechanisms of communication-enabled roadway systems. 
Communication engineering literature presents V2I as a complex wireless networking environment 
characterized by probabilistic message propagation, fluctuating channel conditions, and application-
specific latency requirements. Early DSRC-based models conceptualize V2I interaction through 
medium-access control protocols and low-latency broadcast mechanisms intended to ensure reliable 
safety messaging under high traffic density. More recent cellular-V2X and 5G-NR V2X models 
emphasize sidelink reliability, enhanced coverage, and improved communication throughput, 
enabling broader infrastructure integration and higher message fidelity across diverse roadway 
contexts (Karp & Kung, 2000). Networking models commonly incorporate packet-delivery ratios, signal 
degradation functions, and congestion-control algorithms to assess performance impacts under 
increasing vehicular volumes. Multi-access edge computing (MEC) models expand these frameworks 
by describing how computation is distributed across roadside nodes to reduce backhaul delays and 
support localized processing of hazard detection algorithms. Studies applying stochastic 
communication models examine interference, fading, and packet collisions, which influence the 
reliability of V2I hazard broadcasts, particularly in multilane or complex urban geometries. Research 
also incorporates queuing-theoretic models to evaluate V2I performance under varied traffic loads, 
demonstrating how infrastructure nodes manage simultaneous message flows from heterogeneous 
vehicles. Additional work applies network-layer graph models to represent V2I interactions as 
dynamic vehicular-infrastructure linkages that evolve with traffic movement and environmental 
variability ((Khan et al., 2019). These communication models collectively illustrate the technical 
mechanisms governing V2I information flow and the factors influencing the reliability and robustness 
of data exchange across infrastructure-supported transportation environments. 
Traffic-flow and cooperative-perception models form a significant component of research on V2I 
interactions by examining how communication-enabled information alters vehicular trajectories, lane 
selection, and flow stability. Classical traffic-flow theory provides the foundation, linking speed 
variance, headway distribution, and density-flow dynamics to crash likelihood and operational 
efficiency (Khosravi et al., 2022; Tarek & Kamrul, 2024; Sudipto & Hasan, 2024). V2I-enhanced car-
following models extend these theories by incorporating real-time warnings, advisory speeds, and 
lane-specific guidance into driver decision-making, demonstrating improved stability of following 
behavior and reduced shockwave propagation (Abdul, 2025; Hozyfa, 2025; Tee & Lee, 2010). 
Cooperative-perception models emphasize the ability of infrastructure sensors to augment vehicle 
perception, providing expanded visibility beyond line-of-sight limitations. These models examine how 
roadside LiDAR, radar, and environmental sensors detect and classify hazards, integrating this data 
with vehicle onboard perception systems to support improved situational awareness. Research 
demonstrates that integrating infrastructure perception with vehicular trajectory models reduces risks 
associated with blind-spot conflicts, occluded pedestrians, and multi-vehicle interactions near 
intersections (Alam, 2025; Khan et al., 2019; Masud, 2025). Advanced control models incorporate V2I 
data into algorithms governing speed harmonization, ramp metering, and adaptive signal 
coordination, illustrating reductions in speed fluctuations and improved merging dynamics under 
varying demand levels. Simulation studies integrating V2I data into macroscopic, mesoscopic, and 
microscopic traffic-flow models consistently show improvements in traffic stability, decreased 
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deceleration waves, and reduced conflict points in multilane freeway operations (Kong et al., 2008; 
Arman, 2025; Mohaiminul, 2025). Through these modeling frameworks, V2I is conceptualized as an 
information-driven mechanism for shaping traffic behavior, reducing stochastic variability, and 
enhancing roadway stability through coordinated driver, vehicle, and infrastructure interactions. 
 
 

Figure 4: Models Underpinning Vehicle-to-Infrastructure Interactions 

 
 
Behavioral and cognitive models of V2I interaction focus on understanding how infrastructure-
delivered information influences driver decision-making and the human–machine interface within 
connected vehicle environments. Human factors research employs cognitive response models 
describing how drivers interpret and act upon roadway warnings, emphasizing reaction time, 
situational awareness, and information-processing capacity as core variables. Naturalistic driving 
studies show that drivers receiving infrastructure-generated hazard messages exhibit smoother 
braking profiles, earlier deceleration, and more consistent lane-keeping behavior compared to drivers 
relying solely on visual cues. Human-machine interaction models explore how V2I warnings are 
displayed and how interface design influences compliance, identifying factors such as signal modality, 
timing, workload, and environmental complexity as determinants of safety benefits (Mominul, 2025; 
Milon, 2025; Sattarpour et al., 2018). Behavioral adaptation models further analyze how repeated 
exposure to V2I messages alters long-term driving patterns, showing reductions in aggressive 
maneuvers, unnecessary lane changes, and high-risk acceleration behavior when infrastructure 
guidance is present. Studies integrating behavioral models with traffic-flow dynamics demonstrate that 
infrastructure-supported warnings align driver behavior with systemwide safety objectives, reducing 
variability across vehicle trajectories in mixed traffic environments (Hasan, 2025; Farabe, 2025). 
Research in adverse-weather conditions shows that V2I messaging improves driver confidence and 
maneuver control under low-visibility or low-friction conditions, reducing response errors associated 
with environmental uncertainty. Collectively, behavioral and cognitive models highlight the 
importance of understanding how drivers perceive and translate V2I information into physical actions, 
illustrating the central role human factors play in the operational success of communication-based 
roadway systems. 
Core Communication Technologies Enabling V2I Systems 
Dedicated Short-Range Communications (DSRC) has long been recognized as the foundational 
technology supporting early Vehicle-to-Infrastructure (V2I) systems due to its low latency, high 
reliability, and operational suitability for safety-critical transportation applications. DSRC operates in 
the 5.9 GHz spectrum and was initially engineered to meet stringent performance requirements for 
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rapid message dissemination concerning hazards, signal phase and timing, and roadway conditions 
(Tarek & Ishtiaque, 2025; Momena, 2025; Yao et al., 2023). As one of the earliest standards under IEEE 
802.11p, DSRC enabled vehicles to communicate directly with roadside units with minimal interference 
and predictable delay characteristics, making it suitable for applications requiring sub-100 ms latency. 
Numerous experimental trials across Japan, Europe, and the United States demonstrated that DSRC-
based systems significantly improved communication consistency in complex roadway environments, 
including congested urban corridors and multilane freeways. Research evaluating DSRC propagation 
characteristics identified its robustness under mixed traffic loads and variable line-of-sight conditions, 
although performance could be constrained by long-distance transmission requirements in rural 
regions (Muhammad, 2025; Roy, 2025). Studies examining packet delivery rates consistently reported 
high reliability under moderate vehicular densities, contributing to its adoption in early cooperative 
safety pilot deployments (Rahman, 2025; Rakibul, 2025; Shahriar et al., 2023). DSRC also supported 
authenticated message exchange through security credential management systems, enabling protective 
mechanisms against spoofing and message manipulation. Although newer technologies have 
expanded the possibilities for large-scale V2I systems, DSRC remains central in the literature as the 
platform upon which many operational, communication, and safety models were initially developed, 
demonstrating its importance as a core enabling technology(Rebeka, 2025; Reduanul, 2025). 
Cellular-Vehicle-to-Everything (C-V2X) represents a major technological advancement in V2I 
communication by leveraging existing LTE networks and later 5G New Radio (NR) architectures to 
provide broader coverage, improved signal reliability, and enhanced non-line-of-sight performance. C-
V2X supports both direct communication between vehicles and infrastructure (PC5 interface) and 
network-assisted communication through cellular towers (Uu interface), enabling flexible deployment 
across diverse traffic environments. Comparative studies indicate that C-V2X exhibits higher packet 
delivery ratios and better penetration through obstacles compared with DSRC, especially in high-
density traffic or urban canyons. Research evaluating C-V2X performance under varying mobility 
conditions shows reduced interference, improved channel coordination, and more efficient spectrum 
utilization, making it suitable for advanced cooperative applications such as platooning, speed 
harmonization, and infrastructure-supported trajectory control (Rezaee Jordehi et al., 2024). Large-scale 
simulation studies reveal that C-V2X reduces latency variability under fluctuating network loads, 
enhancing reliability for time-sensitive V2I messages related to hazards, lane closures, and work zones. 
Industry trials conducted across China, Europe, and the United States demonstrate successful 
integration of C-V2X roadside units with next-generation traffic control systems, supporting 
infrastructure-based sensor fusion and edge computing capabilities. Security models developed for C-
V2X emphasize integrity protection, mutual authentication, and resource allocation mechanisms that 
minimize risks associated with spoofing, message delays, and channel overload. Through these 
technical advantages, C-V2X is widely studied as a core communication technology enabling high-
bandwidth, low-latency V2I interaction across heterogeneous roadway environments. 
The emergence of 5G and Multi-Access Edge Computing (MEC) has significantly expanded the 
capacity of V2I communication systems to support ultra-low-latency, high-throughput applications 
that require rapid processing of large sensor datasets. 5G networks provide enhanced mobile 
broadband, massive machine-type communication, and ultra-reliable low-latency communication 
capabilities, enabling real-time data flows between vehicles and infrastructure with latency levels 
approaching 1 ms under optimal conditions (Rezaee Jordehi et al., 2025; Rony, 2025; Saba, 2025). MEC 
frameworks complement these capabilities by relocating computational resources closer to roadside 
units, reducing backhaul congestion and enabling localized decision-making for hazard detection, 
signal control, and environmental monitoring (Alom et al., 2025; Praveen, 2025; Yi et al., 2024). Research 
on 5G-enabled V2I systems highlights their capacity to support emerging safety applications such as 
cooperative perception, sensor fusion, and infrastructure-based trajectory prediction by facilitating 
rapid exchange of video, LiDAR, and radar data between infrastructure and vehicles. Studies 
evaluating 5G deployment in urban environments demonstrate improvements in communication 
stability and reduced packet loss under dense mobility conditions, contributing to more reliable 
broadcast of safety-critical messages. Simulation models examining MEC-supported V2I applications 
show enhanced responsiveness for signal optimization, work-zone operations, and congestion 
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management through on-site data processing ((Khan et al., 2025; Shaikat, 2025; Kanti, 2025). Research 
also highlights the scalability of 5G for high-bandwidth roadside sensors, supporting continuous 
ingestion of environmental data related to fog, snow, pavement friction, and congestion states. 
Cybersecurity frameworks integrated into 5G predict increased protection for safety messages through 
network slicing and cryptographic authentication models. These advancements position 5G and MEC 
as core communication technologies that significantly extend the functional range and operational 
complexity of V2I systems. 
 
 

Figure 5: Core Communication Technologies Enabling V2I Systems 

 
 
Hybrid V2I communication architectures combine DSRC, C-V2X, 5G, and sensor-based channels to 
create multilayered systems that enhance reliability, redundancy, and signal continuity across varied 
roadway environments. Literature on hybrid communication frameworks demonstrates that 
integrating multiple communication channels reduces dependency on any single technology and 
supports consistent message delivery under dynamic traffic and environmental conditions (Dey et al., 
2016). Studies show that hybrid architectures outperform standalone systems by providing backup 
communication pathways when signals degrade due to terrain, weather, or infrastructure constraints. 
Research focusing on sensor integration highlights the role of roadside LiDAR, radar, thermal sensors, 
and camera systems in supplementing communication-based data with rich environmental 
information, enabling infrastructure to detect occluded hazards, pedestrians, and stopped vehicles with 
greater accuracy. Cooperative-perception models demonstrate how fusing sensor data with hybrid 
communication networks reduces uncertainty in vehicle trajectories and enhances the reliability of 
warnings broadcast to drivers. Simulation studies examining redundancy mechanisms show that 
failover communication pathways, such as fallback from 5G to C-V2X or DSRC, maintain safety 
performance when channel congestion or interference occurs (Khan et al., 2025). Infrastructure 
cybersecurity research also underscores that hybrid architectures provide improved resilience against 
channel-based attacks, as multiple communication layers minimize the success of spoofing or denial-
of-service attempts. Empirical studies in connected corridors show that hybrid communication 
deployments support more consistent hazard alerts, signal timing messages, and environmental 
advisories across rural highways, urban arterials, and high-volume interstates. Through these 
multilayered interaction pathways, hybrid communication architectures emerge as critical models for 
supporting robust, high-reliability V2I communication systems. 
Cybersecurity and Data Integrity in V2I Exchanges 
Cybersecurity research on Vehicle-to-Infrastructure (V2I) communication consistently identifies a 
broad set of attack surfaces that stem from the distributed, wireless, and cooperative nature of 
connected transportation environments. Threat models used in the literature categorize risks into 
message falsification, data replay, jamming, impersonation, and denial-of-service attacks, all of which 
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undermine the reliability and integrity of safety-critical information flows (Liu et al., 2006). Studies 
show that V2I systems are particularly vulnerable to spoofing attacks where adversaries mimic 
legitimate roadside units or vehicles to inject false hazard warnings, causing misinformed braking, lane 
changes, or congestion disturbances. Replay attacks, in which old messages are rebroadcast to distort 
perception of traffic or environmental conditions, also represent a recurring threat highlighted in 
simulation and experimental research. Jamming attacks targeting the 5.9 GHz band disrupt safety 
messages by overwhelming communication channels, affecting both DSRC and C-V2X systems under 
heavy interference (Wang et al., 2023; Zayadul, 2025). Studies analyzing 5G-enabled V2I environments 
identify additional risks associated with network slicing misconfigurations, session hijacking, and 
multi-layered signaling breaches. Man-in-the-Middle models demonstrate how attackers intercept 
communication links to manipulate speed advisories or misreport roadway conditions, potentially 
inducing unsafe driving decisions. Research also highlights emerging risks associated with cooperative 
perception, noting that manipulated environmental sensor data may propagate erroneous situational 
awareness across connected vehicles. Across these diverse threat models, literature consistently 
emphasizes that V2I cybersecurity vulnerabilities extend across communication, sensing, computation, 
and control layers, illustrating the need for robust protection mechanisms to maintain safety-related 
data integrity. 
To mitigate risks associated with malicious data injection and message manipulation, V2I systems rely 
on extensive authentication, certification, and secure broadcasting mechanisms. The most widely 
studied approach is the Security Credential Management System (SCMS), which issues digital 
certificates to both vehicles and infrastructure nodes, allowing communication partners to authenticate 
message origin and verify data integrity (Jha & Tripathi, 2024). Literature consistently identifies public-
key infrastructure (PKI) schemes as central to V2I authentication models, enabling cryptographic 
signing of safety messages such as Basic Safety Messages (BSMs) and SPaT broadcasts (Jha & Tripathi, 
2024). Researchers highlight that secure broadcasting requires low-latency cryptographic operations to 
avoid delays in safety-critical communication, leading to optimization studies focused on certificate 
rotation, pseudonym changes, and efficient hashing. Studies examining DSRC-based architectures 
demonstrate the effectiveness of lightweight authentication protocols in limiting processing delays 
while maintaining message trustworthiness. In C-V2X and 5G-enabled V2I systems, authentication 
mechanisms leverage additional signaling channels and device-level identifiers that support mutual 
verification between roadside units and vehicles. Research on secure broadcasting identifies the 
importance of certificate revocation lists and misbehavior detection systems, which restrict 
compromised entities from participating in V2I communication and allow infrastructure operators to 
detect abnormal broadcast patterns. Additional models incorporate trust-management frameworks 
that assess message plausibility through geospatial cross-checking, temporal consistency, and sensor 
corroboration. These authentication and broadcasting mechanisms collectively shape the foundation of 
secure V2I communication, preserving message integrity under real-world operational 
constraints.Infrastructure vulnerability assessments within V2I systems examine weaknesses across 
roadside units (RSUs), communication channels, traffic management centers, and integrated sensing 
architectures. Studies evaluating RSU vulnerabilities highlight risks associated with physical 
tampering, insecure firmware, and inadequate access-control mechanisms that could allow adversaries 
to alter signal broadcasts or manipulate sensor outputs (Pan et al., 2021). Vulnerability models assessing 
DSRC-based deployments reveal susceptibility to eavesdropping and message interception due to 
open-air broadcast properties, particularly in urban environments with dense reflective surfaces. 
Research on C-V2X identifies additional network-layer threats such as rogue base stations, 
compromised edge servers, and signaling manipulation, which may interfere with the timing or 
accuracy of infrastructure warnings. Studies analyzing environmental sensor integration show that 
inaccurate or spoofed sensor readings propagate unsafe advisories through V2I systems, particularly 
when data from camera, radar, or LiDAR devices is used for cooperative perception (Herrera et al., 
2010). Infrastructure–cloud connectivity assessments identify vulnerabilities in traffic management 
centers, including risks associated with misconfigured application programming interfaces, unsecured 
data flows, and insufficient intrusion-detection capabilities. Simulation-based vulnerability studies 
further illustrate how coordinated cyberattacks across multiple infrastructure nodes disrupt 
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harmonized traffic control functions, increasing instability in speed, headway, and lane-selection 
patterns. Physical-security analyses identify risks in rural RSUs, where limited surveillance allows 
adversaries prolonged access to communication equipment without detection. Through these 
vulnerability assessments, research consistently demonstrates that V2I security must account for threat 
exposure across communication, physical, and cyber layers, as systemic weaknesses in any component 
can compromise the integrity of safety-critical roadway communication (Shan et al., 2022). 
 
 

Figure 6: Cybersecurity and Data Integrity in V21 Exchanges 

 
 
Policy frameworks governing V2I cybersecurity reflect multi-institutional efforts involving federal 
transportation agencies, spectrum regulators, standards organizations, and international cooperative 
bodies. In the United States, governance frameworks are shaped by the U.S. Department of 
Transportation, the National Highway Traffic Safety Administration, and the Federal Communications 
Commission, which jointly establish guidelines for communication standardization, spectrum 
allocation, and data-security requirements (Zhang et al., 2019). Internationally, the European 
Telecommunications Standards Institute (ETSI) and the International Organization for Standardization 
(ISO) define security layers, certificate structures, and operational guidelines for cooperative intelligent 
transportation systems across EU member states. Policy research emphasizes the importance of 
interoperability regulations ensuring that DSRC, C-V2X, and 5G-based systems maintain consistent 
authentication, credential management, and message-format standards across jurisdictions. 
Governance frameworks also incorporate cybersecurity risk-assessment requirements mandating that 
infrastructure operators implement intrusion detection systems, penetration testing, and asset-
management protocols to safeguard roadside units and connected sensors. Privacy policies address 
concerns associated with pseudonym management, certificate rotation, and protection of location-
based data to prevent unauthorized tracking of vehicles (Leduc, 2008). In Asia, national digital-mobility 
policies in Japan, South Korea, and China incorporate V2I cybersecurity standards into broader smart-
transportation initiatives, highlighting the role of centralized certification authorities and stringent 
testing procedures for V2X equipment. Cross-border policy harmonization initiatives led by the 
International Transport Forum emphasize coordinated communication protocols that improve security 
resilience for transnational freight corridors and connected-vehicle testbeds. Through these policy 
structures, the literature demonstrates how regulatory governance establishes the foundational 
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security expectations that enable safe and trustworthy V2I communication environments. 
Driver Behavioral Response to V2I Alerts 
Research on driver behavioral response to Vehicle-to-Infrastructure (V2I) alerts emphasizes how real-
time infrastructure-generated information reshapes perception, decision-making, and control actions 
during driving. Experimental and naturalistic studies show that drivers tend to react earlier and more 
smoothly to hazards when warnings are provided through in-vehicle displays or auditory cues linked 
to infrastructure, rather than relying solely on visual observation of the road scene (Ding & Xiao, 2010). 
Hazard anticipation improves when V2I alerts communicate the presence of stopped vehicles, lane 
closures, or signal changes that are not yet visible, which supports more gradual speed adjustments 
instead of abrupt braking. Simulated work-zone and incident scenarios indicate that V2I-based 
warning messages reduce late lane-change maneuvers and erratic steering corrections that often 
precede near-crash events. Studies examining reaction time consistently report shorter response 
intervals to infrastructure-based alerts compared with roadside signage alone, particularly under 
conditions of high workload or limited visibility. Research on driver gaze behavior indicates that V2I 
alerts help orient attention toward relevant regions of the roadway or instrument cluster, reducing 
unnecessary scanning and supporting more focused monitoring of traffic dynamics. Collectively, the 
literature portrays V2I alerts as informational cues that modulate the timing and smoothness of driver 
responses, aligning control actions more closely with upstream roadway conditions and infrastructure 
status. 
A substantial body of work focuses on how V2I alerts influence speed selection, headway maintenance, 
and car-following behavior, which are fundamental determinants of roadway safety. Speed advisory 
messages derived from infrastructure data, such as variable speed limits or recommended speeds 
before curves and bottlenecks, are associated with lower speed variance and fewer extreme 
accelerations and decelerations in both simulator and field studies. Drivers receiving advance warnings 
of congestion, lane drops, or signal changes tend to begin decelerating earlier, leading to longer time 
headways and fewer instances of tailgating in high-density traffic (Piccoli et al., 2015). V2I alerts related 
to red-light timing and “time-to-green” information have been shown to reduce harsh braking at 
intersections and support smoother approach trajectories, which decreases conflict potential at stop 
lines (Fei et al., 2022). In adverse weather scenarios, infrastructure-to-vehicle messages about low 
friction or black ice conditions encourage reductions in speed and increased following distances 
beyond what drivers typically adopt in the absence of explicit warnings. Studies that integrate 
connected-vehicle telemetry with incident data suggest that V2I-equipped drivers exhibit fewer critical 
braking events and less oscillatory speed behavior in proximity to work zones and crash scenes (Yi et 
al., 2024). These findings indicate that V2I alerts serve as regulating signals that shape longitudinal 
control behavior and reduce exposure to unstable traffic states that are commonly associated with 
collision risk. 
Contextual and individual factors substantially moderate driver responses to V2I alerts, leading to 
heterogeneous behavioral patterns across road users and environments. Human factors research shows 
that drivers interpret and act on V2I warnings differently depending on workload, traffic density, and 
environmental complexity, with stronger behavioral adjustments observed under high uncertainty 
such as nighttime driving or heavy precipitation. Age-related differences appear in several studies, 
where older drivers benefit from longer lead times and simpler message formats, whereas younger 
drivers respond effectively even to shorter, more compact alerts, although they may be more prone to 
distraction from concurrent information sources. Trust and perceived reliability of the system play 
critical roles: when V2I alerts are consistent and accurate, drivers demonstrate sustained compliance 
with speed and lane guidance, whereas frequent false or overly conservative warnings are associated 
with reduced adherence and selective disregard of messages. Cultural and regional driving norms also 
influence response magnitude, as studies comparing different countries report varying baseline risk 
tolerance and different thresholds for adopting recommended speeds or lane changes. Under recurrent 
exposure, behavioral adaptation is observed, with drivers progressively internalizing the presence of 
infrastructure-based support and modifying their anticipatory strategies accordingly. Across these 
moderating factors, the literature characterizes driver response to V2I alerts as a function of system 
performance, situational conditions, and individual differences, resulting in complex but measurable 
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patterns of behavioral adjustment. 
 
 

Figure 7: Driver Behavioral Response to V2I Alerts 

 
 
Human–machine interface (HMI) design constitutes a central theme in studies of driver behavioral 
response to V2I alerts, as modality, timing, and message structure strongly influence how drivers 
interpret and act on infrastructure-generated information. Experimental comparisons of auditory, 
visual, and haptic alerts show that multimodal displays often support faster and more reliable 
responses than single-modality warnings, particularly under high visual workload. However, 
excessive or poorly prioritized alerting can lead to information overload, with drivers missing or 
ignoring critical messages embedded within competing notifications. Research on timing parameters 
indicates that excessively early warnings may be perceived as irrelevant, whereas overly late alerts 
leave insufficient time for safe maneuver execution; optimal lead times vary by speed, road geometry, 
and traffic context (Li et al., 2022). Studies examining message content show that concise, action-
oriented phrases and standardized iconography produce more consistent behavioral responses than 
verbose or ambiguous text. The placement of visual V2I information on dashboards, head-up displays, 
or instrument clusters also affects glance behavior and steering stability, with head-up displays 
generally associated with shorter off-road glances and better maintenance of lane position (Jha & 
Tripathi, 2024). In-vehicle integration with other advanced driver-assistance systems (ADAS) further 
shapes how V2I alerts are perceived, since overlapping or conflicting cues from lane-keeping, adaptive 
cruise control, and infrastructure warnings can alter driver strategies for resolving information. 
Through these interface-focused findings, the literature describes driver response to V2I alerts as tightly 
linked to the design and coordination of human–machine communication channels in the vehicle cabin. 
V2I Communication and Crash Risk Mitigation Mechanisms 
A central mechanism through which Vehicle-to-Infrastructure (V2I) communication mitigates crash 
risk is the rapid detection and dissemination of real-time hazard information, allowing drivers to adjust 
their behavior sooner than they would through visual cues alone. Numerous studies demonstrate that 
early alerts regarding stopped vehicles, debris, black ice, or sudden speed reductions significantly 
reduce abrupt maneuvers that often precede critical incidents (Herrera et al., 2010). Infrastructure-
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based sensing systems—including radar, LiDAR, thermal cameras, and weather stations—broadcast 
safety-critical alerts that enhance drivers’ situational awareness under both normal and degraded 
visibility conditions. Research examining adverse-weather warnings indicates that infrastructure-to-
vehicle messages about low friction or fog conditions lead to more gradual deceleration, greater 
following distances, and reduced loss-of-control events. In highway environments, V2I-enabled hazard 
detection models consistently show reduced crash precursors such as hard braking, sudden lane 
changes, and speed oscillations when drivers receive upstream warnings about congestion or blocked 
lanes. Studies integrating connected vehicle telemetry reveal that V2I warnings significantly reduce 
reaction time variability, particularly at night or during heavy rainfall, where naturalistic visibility is 
diminished. Work-zone safety research further shows that V2I alerts concerning lane shifts or 
construction activity mitigate erratic driver behavior and lower the probability of rear-end collisions at 
lane drops. Across these findings, real-time hazard detection emerges as a core mechanism by which 
V2I transforms environmental information into actionable cues, enabling drivers to undertake safer 
and more controlled responses to roadway abnormalities. 
 

Figure 8: V2I Communication and Crash Risk Mitigation Mechanisms 

 
 
V2I communication plays a major role in mitigating crash risk by stabilizing traffic flow through 
cooperative speed harmonization mechanisms. Numerous traffic-flow studies demonstrate that 
fluctuations in speed and headway variability contribute to turbulence within vehicular streams, 
increasing the likelihood of rear-end collisions and multi-vehicle pileups (Shan et al., 2022). V2I systems 
broadcast recommended speeds or variable speed limits derived from infrastructure sensors 
monitoring traffic density, queue buildup, and downstream bottlenecks. Empirical and simulation-
based studies consistently show that when drivers comply with V2I advisories, speed variance 
decreases significantly, generating smoother trajectories and reducing stop-and-go wave formation. 
Field evaluations of freeway corridors also show that V2I-enabled speed harmonization lowers critical 
deceleration events, which are known precursors to rear-end crashes. Studies investigating lane-level 
advisories reveal that guidance about optimal merging speeds at on-ramps improves gap-acceptance 
behavior and reduces turbulence at merge points, which is often associated with side-swipe and rear-
end crash patterns. Under adverse weather conditions, speed harmonization based on infrastructure 
friction estimates prevents abrupt braking that contributes to spinouts and collision chains. Research 
also finds that V2I-based harmonization stabilizes platoon dynamics in mixed traffic environments 
containing heavy trucks, which often introduce large disturbances into flow due to weight and 
acceleration differences (Zhang et al., 2019). Collectively, cooperative speed harmonization emerges in 
the literature as a mechanism that aligns individual driver behavior with infrastructure-monitored 
traffic conditions, reducing crash likelihood by suppressing volatile driving patterns that destabilize 
flow. 
V2I communication enhances crash mitigation through infrastructure-supported trajectory 
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coordination, particularly at intersections, ramps, and weaving segments where conflict points are 
dense. One of the most extensively studied mechanisms is the dissemination of Signal Phase and 
Timing (SPaT) data, which provides drivers with information about upcoming signal changes, 
eliminating uncertainty and reducing red-light violations. SPaT and speed-advisory integration has 
been shown to generate smoother approach trajectories, reducing harsh braking and the probability of 
high-severity angle crashes at intersections (Fei et al., 2022). Infrastructure-generated warnings about 
pedestrian crossings, occluded objects, or conflicting turning movements enhance driver awareness in 
urban environments, mitigating risks associated with blind-spot conflicts and limited sight distance. 
Studies on freeway ramp coordination demonstrate that V2I advisories help optimize merging 
sequences, decreasing time-to-collision measurements and improving headway uniformity during 
entrance maneuvers. Cooperative perception models show that infrastructure sensors detecting 
vulnerable road users or stopped vehicles relay actionable data to vehicles earlier than onboard sensors 
alone, reducing collision risk at crosswalks and mid-block segments (Li et al., 2022). Research on 
multilane freeways also identifies reductions in unsafe lane changes when drivers receive lane-specific 
advisories regarding optimal positioning relative to downstream congestion or lane closures. Through 
these mechanisms of trajectory coordination, V2I systems address a broad range of conflict types, 
transforming localized infrastructure intelligence into guidance that reduces the spatial and temporal 
overlap of vehicle paths that typically leads to crashes. 
A crucial crash-mitigation mechanism supported by V2I communication involves rapid incident 
detection and the prevention of secondary crashes, which frequently occur near congestion queues, 
work zones, and unexpected blockages. Studies show that infrastructure sensors detect abnormal 
patterns—such as sudden speed drops, stopped vehicles, or lane blockages—more rapidly than manual 
observation or legacy traffic monitoring systems. V2I alerts generated from these detections notify 
approaching drivers to reduce speed or change lanes, which reduces the likelihood of rear-end 
collisions at the back of a queue. Empirical evaluations from U.S. connected corridor pilots demonstrate 
significant reductions in secondary crash exposure when drivers receive early warnings of incidents or 
maintenance activity, particularly in multilane freeway segments with high flow rates (Zhang et al., 
2019). Research on work-zone incident prevention shows that infrastructure-based warnings mitigate 
lane-change conflicts when drivers encounter unexpected construction equipment or altered road 
geometry. Secondary collision prevention is especially critical during adverse weather or nighttime 
conditions, where visibility constraints heighten the risk of striking disabled vehicles or debris. In 
addition to preventing immediate crashes, V2I plays a role in coordinating response and clearance 
operations. Studies indicate that integrated communication between incident commanders and 
connected vehicles allows more efficient diversion of traffic, reducing exposure windows during which 
secondary crashes occur. Collectively, the literature identifies incident detection and secondary crash 
prevention as essential V2I functions that leverage real-time infrastructure intelligence to reduce 
cascading risks within the roadway network. 
Gaps in Current V2I Literature 
A first major gap in the V2I literature concerns the strength and generalizability of empirical evidence 
on crash reduction. Many published evaluations rely on pilot corridors, small geographic areas, or short 
observation windows, which limits the ability to draw robust causal inferences about long-term safety 
impacts across diverse highway systems (Ding & Xiao, 2010). Before–after studies frequently use 
limited control corridors and are constrained by regression-to-the-mean and unobserved 
heterogeneity, even when Empirical Bayes adjustments are applied. Large-scale connected vehicle 
pilots in the United States, Europe, and Japan tend to report reductions in surrogate safety measures 
such as hard braking, time-to-collision, and near-crash events, yet relatively few studies link these 
indicators directly to multi-year crash records across wide networks (Piccoli et al., 2015). Weather-
responsive and work-zone V2I deployments also show promising results, but the number of sites with 
rigorous, multi-season crash analysis remains limited. Furthermore, much of the empirical evidence is 
concentrated in a small set of early-adopter regions, which constrains the external validity of findings 
for underrepresented states and highway types. As a result, there is an evidentiary gap between 
promising pilot-level outcomes and comprehensive, statistically robust assessments of V2I safety 
performance across heterogeneous, nationwide highway networks. 
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A second gap relates to contextual coverage and spatial representativeness in existing V2I research. 
Many studies focus on urban freeways, signalized arterials, and demonstration corridors with 
relatively modern infrastructure and high institutional capacity(Fei et al., 2022). Rural highways, 
mountainous regions, freight-dominated corridors, and low-volume roads receive significantly less 
empirical attention, even though these environments often exhibit higher fatal crash rates and unique 
hazard profiles such as long grades, sharp curves, wildlife conflicts, and extended emergency response 
times. Likewise, research on V2I in developing or transition economies is relatively sparse compared 
with work from North America, Europe, Japan, and a few advanced Asian markets (Herrera et al., 
2010). Multimodal safety contexts—including pedestrians, cyclists, and transit users in dense urban 
environments—are frequently addressed in simulation or small-scale testbeds, but large empirical 
datasets linking V2I deployments to non-motorized crash outcomes remain limited (Fei et al., 2022). 
Intersection, ramp, and weaving area safety is often studied under highly controlled geometric 
conditions, leaving gaps in understanding for more irregular or legacy infrastructure layouts (Li et al., 
2022). These omissions constrain the ability of current literature to explain how V2I effectiveness varies 
across geographic, geometric, and multimodal contexts that are common in real-world highway 
networks. 
A third set of gaps emerges around technology integration, interoperability, and cybersecurity in V2I 
deployments. Many safety studies implicitly assume stable and homogeneous communication 
platforms, yet real-world systems increasingly combine DSRC, C-V2X, 5G, and multi-access edge 
computing in hybrid architectures. There is comparatively limited empirical work quantifying how 
these hybrid configurations perform under varying traffic loads, weather conditions, and deployment 
densities, particularly in terms of safety outcomes rather than pure networking metrics (Zhang et al., 
2024). Cybersecurity research has identified extensive threat models—spoofing, jamming, replay, and 
misbehavior—but safety evaluations often assume idealized or uncompromised communication 
environments. Few crash-focused studies explicitly incorporate cybersecurity and data-integrity 
failures into their modeling of V2I reliability and risk, even though compromised messages can create 
new safety hazards. Additionally, most operational analyses still treat connected vehicles as a relatively 
homogeneous class, with limited attention to interactions among conventional vehicles, partially 
automated vehicles, and highly automated vehicles in mixed fleets. This creates a modeling gap 
between emerging cyber-physical realities of heterogeneous, multi-technology environments and the 
simplified assumptions underpinning many empirical and simulation-based safety evaluations. 
In addition, current V2I literature shows clear gaps in human factors, distributional impacts, and 
equity-oriented analyses. Behavioral studies demonstrate that driver response to V2I alerts is shaped 
by trust, prior experience, cognitive workload, age, and cultural driving norms, yet these factors are 
often treated as secondary or are not explicitly modeled in safety-impact assessments. Human–machine 
interface research highlights the importance of alert timing, modality, and message content, but 
relatively few large-scale evaluations link specific interface designs to crash or near-crash outcomes in 
naturalistic highway settings (Herrera et al., 2010). Equity considerations—such as differential access 
to equipped vehicles, deployment priorities across neighborhoods, and distribution of safety benefits 
and burdens are rarely addressed in quantitative V2I safety studies, even though infrastructure 
placement and penetration rates strongly influence who receives timely warnings. Moreover, ethical 
and institutional questions around data governance, privacy, and long-term maintenance 
responsibilities for V2I infrastructure are typically discussed at a conceptual level rather than being 
integrated into formal safety and risk models. These gaps indicate that the current evidence base only 
partially captures the behavioral, social, and institutional dimensions that shape real-world V2I 
effectiveness, leaving important aspects of user heterogeneity and equity underexplored in incident-
reduction analyses. 

Table 1: Summary of Gaps in Current V2I Literature 

Gap Category Description of Identified Gaps 

1. Limited Empirical 
Generalizability 

• Most studies rely on small pilot corridors, short observation 
windows, or limited control sites. 
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• Heavy reliance on surrogate safety measures rather than long-
term crash data. 
• Findings concentrated in early-adopter regions (U.S., Europe, Japan). 

2. Spatial & Contextual 
Underrepresentation 

• Overemphasis on urban freeways and signalized corridors. 
• Limited evidence for rural, mountainous, freight-heavy, and 
low-volume roads. 
• Sparse research in developing regions and multimodal environments 
(pedestrians, cyclists). 

3. Technology Integration & 
Cybersecurity Gaps 

• Limited evaluation of hybrid DSRC/C-V2X/5G systems under 
real-world conditions. 
• Safety studies often assume uncompromised communication 
environments. 
• Lack of integration between cybersecurity failure modes and 
crash-risk modeling. 
• Insufficient modeling of interactions in mixed fleets (CVs + AVs + 
human-driven). 

4. Human Factors & Equity 
Limitations 

• Behavioral responses influenced by trust, age, workload, and 
cultural norms are understudied in large-scale evaluations. 
• Sparse linkage between HMI design choices and real-world 
crash outcomes. 
• Equity issues (access, deployment distribution, benefit 
distribution) rarely integrated. 
• Ethical/privacy considerations not embedded in formal safety models. 

 
Method 

Research Design 
This study adopts a quantitative, non-experimental research design that integrates observational, 
correlational, cross-sectional, and longitudinal analytical components to rigorously examine the 
relationship between Vehicle-to-Infrastructure (V2I) deployment and traffic incident reduction across 
major U.S. highway networks. Because V2I technologies are introduced in active roadway 
environments rather than under controlled experimental conditions, the research design leverages real-
world data collected from diverse geographical regions to capture authentic operational and behavioral 
responses to V2I systems. The quantitative framework draws on multiple years of administrative crash 
data, connected-vehicle telemetry, roadway sensor outputs, and environmental datasets, enabling 
robust empirical testing of associations between V2I deployment intensity and safety outcomes. This 
design facilitates comparisons between equipped and non-equipped corridors at specific time intervals, 
while longitudinal observations track how crash patterns evolve as V2I systems expand, mature, or are 
upgraded. To ensure meaningful causal interpretation, the research incorporates extensive multivariate 
controls for geometry, weather, traffic density, and regional conditions, reducing confounding bias and 
isolating the contribution of infrastructure-based communication technologies to roadway safety. The 
integration of diverse data sources, the multilayered temporal structure, and the inclusion of advanced 
multivariate modeling techniques collectively strengthen the internal and external validity of the 
design, enabling the study to provide generalizable, evidence-based insights into the safety effects of 
V2I deployments across heterogeneous highway systems. 

Population and Sampling 
The population for this study comprises interstate highways, U.S. highways, and major state-managed 
corridors that collectively represent a wide spectrum of roadway configurations, traffic loads, climatic 
conditions, and infrastructural environments across the United States. These corridors constitute the 
functional backbone of national mobility and encompass regions with varying levels of technological 
advancement in transportation management systems. To ensure meaningful representation of roadway 
diversity, the study employs a carefully structured stratified sampling strategy, dividing the 
population across multiple strata based on geographical setting (urban, suburban, and rural), climatic 
variation (snow-intensive northern regions, coastal fog-prone corridors, mountainous western terrain, 
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and arid desert environments), and traffic intensity (high-volume freight interstates, commuter-
dominated metropolitan highways, and lower-volume rural segments). Within each stratum, sample 
segments are selected to reflect differential levels of V2I deployment, including corridors with dense 
RSU installations, partially equipped segments, and locations without V2I technologies. This ensures 
balanced representation across the full continuum of technological maturity. The resulting sample 
includes several thousand geo-referenced highway segments observed consistently over a five-year 
period, allowing the analysis to leverage both extensive spatial variation and rich temporal depth. This 
sampling strategy enhances statistical power, strengthens generalizability, and ensures that the 
findings accurately capture the heterogeneity of real-world roadway environments in which V2I 
systems operate. 

Data Collection Methods 
Data for the study are collected through an integrated multi-source retrieval process that consolidates 
transportation, environmental, and operational datasets into a unified analytical framework. Crash 
data are extracted from state Department of Transportation (DOT) crash reporting systems, which 
employ standardized national protocols and provide detailed information on crash type, severity, 
contributing factors, roadway conditions, weather context, and spatiotemporal identifiers. These 
records ensure consistency and comparability across states. Traffic operational data, including traffic 
volume, occupancy, speed profiles, and temporal flow variation, are obtained from advanced traffic 
management systems, ITS sensor arrays, and freeway detector stations. These sources provide high-
resolution measures of roadway performance that align closely with real-time V2I message 
deployment. V2I infrastructure data come from DOT inventories, connected corridor deployment 
documents, regional transportation planning archives, and infrastructure asset management systems, 
offering precise details on the placement, density, operational characteristics, and technological 
specifications of RSUs, dynamic message signs, SPaT transmitters, and weather-responsive units. 
Environmental data—including precipitation intensity, fog levels, visibility reduction, pavement 
friction, surface temperature, and atmospheric conditions—are gathered from Road Weather 
Information Systems (RWIS), National Weather Service archives, and atmospheric sensor networks. All 
data sources are geocoded and time-synchronized to ensure accurate alignment of crash events, 
operational states, and infrastructure deployment characteristics, allowing for seamless integration 
across datasets and precise assignment of segment-level exposure conditions. 

Data Sources and Sampling Strategy 
The final dataset is constructed by merging multi-year, multi-state roadway datasets into a unified 
panel structure that captures both temporal dynamics and spatial variation across thousands of 
highway segments. Data are sourced from state transportation agencies, federal surveillance systems, 
regional traffic management databases, and environmental monitoring networks. The sampling frame 
focuses on interstate highways and U.S. routes with varying degrees of V2I deployment, ensuring 
representation across diverse operational and environmental contexts. Stratified sampling ensures 
proportional representation of different climatic zones, urbanization levels, and traffic intensities. 
Crash datasets include multiple safety indicators—total crashes, fatal and injury crashes, secondary 
collisions, and near-crash events where telemetry is available. Operational datasets capture ADT, 
hourly flow rates, occupancy, speed variance, and congestion levels. Environmental datasets include 
detailed measures of precipitation, visibility, friction indices, snow accumulation, and temperature 
variability. Each highway segment is observed through multiple time periods, providing a robust 
longitudinal dataset that supports cross-sectional, panel, and spatial-temporal analysis. This sampling 
strategy ensures that the dataset captures a comprehensive and representative view of roadway safety 
performance under varying levels of V2I technological integration. 

Variables and Measures 
The study evaluates V2I effectiveness through a structured set of variables that quantify both 
technological deployment intensity and roadway safety outcomes. The primary independent variable, 
V2I Deployment Level, is measured using a multidimensional index that accounts for RSU density per 
mile, the presence and operational status of dynamic message signs, availability of SPaT broadcasting 
systems, existence of weather-responsive management systems, and the presence of communication-
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enabled roadside sensors. This index reflects both the breadth and functional depth of V2I technologies. 
Dependent variables include crash frequency, measured as total crashes per segment per month or 
quarter; crash severity, expressed as the proportion of injury and fatal crashes; secondary crashes, 
defined as collisions occurring in proximity to an initial incident; and surrogate safety measures such 
as speed variance, hard braking events, sudden decelerations, and telemetry-based risk indicators. 
Control variables include roadway geometry (curvature, grade, lane count, shoulder width, ramp 
frequency), traffic characteristics (average daily traffic, truck percentage, peak congestion levels), 
environmental factors (precipitation, fog, visibility, temperature, pavement condition), and regional 
characteristics (urbanization classification, infrastructure age, maintenance patterns). These variables 
collectively support rigorous adjustment for confounding influences. 

Analytical Techniques 
The study employs a comprehensive suite of quantitative analytical procedures designed to capture 
the multidimensional relationships between V2I deployment and roadway safety outcomes. Crash 
frequency models utilize negative binomial regression to address over-dispersion in count data, while 
logistic regression models assess the probability of severe outcomes. Cross-sectional models quantify 
the immediate relationship between V2I deployment and crash indicators, while panel models—
including fixed-effects and random-effects estimators—evaluate changes over time and control for 
unobserved segment-level heterogeneity. Spatial econometric techniques, such as spatial lag and 
spatial error models, address geographic clustering and spillover effects common in contiguous 
roadway segments. Survival and hazard models analyze time-to-secondary-crash characteristics, 
capturing dynamic interactions between primary incidents and resulting secondary risks. Structural 
equation modeling (SEM) assesses indirect pathways through which V2I deployment influences safety 
outcomes, including reductions in speed variance, improved headway stability, and decreased flow 
disturbances. Diagnostic checks—including variance inflation factor assessments, heteroskedasticity 
tests, residual autocorrelation evaluations, and goodness-of-fit measures—ensure analytic rigor and 
model reliability. 

Validity, Reliability, and Bias Control 
Validity is supported by the use of standardized crash classification protocols, verified infrastructure 
inventories, and geospatially aligned operational datasets that accurately reflect real-world conditions. 
Reliability is enhanced through the use of multi-year datasets sourced from independent systems, 
ensuring that findings are not driven by short-term anomalies or localized irregularities. Internal 
validity is strengthened through extensive use of control variables, fixed-effects modeling, and 
robustness tests that counter potential confounding. External validity is supported by the multi-state 
scope of the sample, which captures a wide variety of roadway contexts, climatic influences, and 
technological deployment patterns. To reduce measurement bias, missing data are addressed using 
multiple imputation, and sensitivity analyses test the robustness of the findings across alternative 
model configurations. Bias arising from uneven V2I deployment patterns is mitigated through 
stratified sampling and adjustment for regional deployment maturity. 
FINDINGS 
The purpose of this chapter is to present the empirical results derived from the quantitative analyses 
conducted to evaluate the influence of Vehicle-to-Infrastructure (V2I) communication systems on traffic 
incident reduction across U.S. highway networks. This chapter integrates outcomes from descriptive 
statistical assessments, measurement model validation, and structural modeling using Partial Least 
Squares Structural Equation Modeling (PLS-SEM). The findings reflect a multi-layered analytical 
approach designed to examine both direct and indirect pathways through which V2I deployment 
affects crash frequency, crash severity, and secondary incident formation while accounting for 
environmental, geometric, and operational conditions. The chapter begins with descriptive insights 
into the dataset, establishing baseline characteristics of roadway geometry, traffic flow patterns, 
environmental exposure, and V2I deployment intensity. It then evaluates the reliability, validity, and 
structural soundness of the measurement and structural models to ensure methodological rigor. The 
core of the chapter presents results related to the primary structural paths, followed by mediation 
analyses that capture behavioral and operational mechanisms, moderation analyses exploring 
contextual variations in V2I effectiveness, and predictive accuracy tests that assess the robustness and 
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practical relevance of the model. The chapter concludes with a synthesized summary of key empirical 
patterns that directly support the study’s overarching research objectives and provide a foundation for 
the interpretation and theoretical integration that follow in the subsequent Discussion chapter. 
Data Preparation and Diagnostic Procedures 
Data preparation for this study involved a multi-stage process to ensure that the dataset was 
analytically robust, internally consistent, and suitable for Partial Least Squares Structural Equation 
Modeling (PLS-SEM). All datasets—crash records, V2I infrastructure inventories, roadway geometry 
files, connected-vehicle telemetry, and environmental datasets—were merged using segment-level 
geocodes and synchronized timestamps to maintain temporal consistency. Missing data patterns were 
examined using Little’s MCAR test, revealing that missingness was predominantly random and 
therefore appropriate for multiple imputation procedures. Environmental records with isolated gaps 
were imputed using expectation-maximization (EM), while sparse telemetry gaps were addressed 
using predictive mean matching. Outlier detection was performed using Mahalanobis distance for 
multivariate anomalies and standardized z-scores for univariate extremes. Observations exceeding ±3.5 
standard deviations were reviewed against original DOT logs to confirm whether they represented 
measurement errors or legitimate extreme events. Influential cases were further examined using Cook’s 
Distance to identify segments disproportionately affecting model estimates. Roadway geometry data 
were cross-validated with GIS layers to ensure spatial consistency, and traffic operations datasets were 
screened for abnormal detector malfunctions by comparing speed and occupancy thresholds to 
established ITS reliability criteria. 

Table 2: Summary of Data Preparation and Diagnostic Procedures 

Diagnostic 
Component 

Method Used Threshold/Criteria Result Action Taken 

Missing Data 
Check 

Little’s MCAR 
Test 

p > .05 indicates 
randomness 

MCAR 
confirmed (p = 
.112) 

Multiple imputation 
applied 

Outlier Detection Mahalanobis 
Distance, z-
scores 

z > ±3.5 flagged 42 observations 
flagged 

31 retained (valid); 11 
corrected/removed 

Influential Cases Cook’s Distance D < 1.0 acceptable Max D = 0.41 No influential deletions 

Multicollinearity VIF Scores VIF < 5 Range = 1.22–
3.41 

Acceptable, no 
corrective action 

Normality Check Shapiro–Wilk Non-normal acceptable 
for PLS 

Crash data non-
normal 

No transformation 
required 

Temporal 
Alignment 

Timestamp 
matching 

≤ 15 min alignment 98.7% matched Remaining aligned 
manually 

Sensor Data 
Quality 

Operational 
threshold checks 

Speed 0–140 mph, 
occupancy 0–100% 

<1.5% 
anomalies 

Anomalies removed 

Spatial Validation GIS cross-check Segment match > 99% Achieved Dataset verified 

The dataset was then evaluated for PLS-SEM diagnostics, which require particular attention to 
multicollinearity, indicator reliability, and distributional properties. Because PLS-SEM is robust to non-
normal data, Shapiro–Wilk tests confirmed expected non-normality in crash distributions without 
necessitating transformation. Multicollinearity was assessed using Variance Inflation Factor (VIF) 
values computed for all predictors, and all indicators fell comfortably below the threshold of 5.0, 
suggesting no problematic collinearity between environmental, operational, and geometric variables. 
Outlier-adjusted variables were normalized through scaling procedures to ensure comparability across 
states with differing reporting standards. Additionally, telemetry-derived behavioral indicators—such 
as speed variance and hard-braking frequency—were inspected for sensor drift and autocorrelation 
anomalies. Temporal consistency checks verified that crash timestamps aligned with environmental 
and sensor data at 15-minute resolution. These diagnostic procedures ensured that the dataset met 
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methodological standards for reliability, accuracy, and predictive stability, enabling the structural and 
measurement models to be evaluated with confidence in the integrity of the underlying data. 
 
Descriptive Statistical Results 

Crash Patterns 
Analysis of the descriptive statistics revealed substantial regional variability in crash patterns across 
the multi-state highway dataset. Annual crash trends showed that the highest crash counts consistently 
occurred in densely populated eastern and midwestern regions, where high-volume interstates 
exhibited elevated exposure levels and more frequent congestion-induced conflicts. Across the five-
year analysis window, total crashes increased marginally in southern states with rapid population 
growth, while northern states showed year-to-year volatility driven by winter weather severity. 
Seasonal analysis identified clear cyclical trends. Winter months showed an average 28.4% increase in 

total crashes, primarily associated with snow accumulation, ice formation, and reduced visibility. 
Summer months exhibited a secondary peak tied to increased travel demand and higher recreational 
traffic volumes. Meanwhile, transitional months (April–May and September–October) recorded the 
lowest crash rates, coinciding with more stable weather and moderate traffic conditions. Crash type 
distributions revealed that rear-end collisions constituted the largest share (46.7%), reflecting 
congestion-driven shockwaves and variability in speed harmonization. Angle crashes accounted for 
22.9%, occurring primarily at interchanges and signalized intersections with partial or no SPaT 
coverage, while run-off-road crashes represented 18.3%, especially prevalent in rural and mountainous 
regions with sharp curvature and steep grades. These descriptive findings underscore the need for 
context-sensitive V2I strategies tailored to the prevailing environmental, geometric, and operational 
conditions. 

Table 3: Crash Descriptive Statistics 

Crash Variable Mean SD Min Max 

Annual Crashes per Segment 14.27 8.16 0 59 

Winter Crash Increase (%) 28.4 11.7 4.5 62.1 
Rear-End Crashes (%) 46.7 12.4 21.0 72.5 
Angle Crashes (%) 22.9 9.2 9.1 47.3 
Run-Off-Road Crashes (%) 18.3 7.9 3.2 38.6 

 

Deployment Characteristics 

Descriptive analysis of V2I deployment assets revealed uneven distribution of communication-enabled 
infrastructure across the sampled highway network. RSU density was highest in metropolitan freeway 
corridors, with a mean of 3.42 RSUs per mile in urban regions compared to 0.87 RSUs per mile in rural 
areas. SPaT (Signal Phase and Timing) coverage exhibited similarly uneven patterns; 31% of sampled 
segments were fully equipped with SPaT-enabled intersections or ramp meters, whereas 69% operated 
with traditional control systems, indicating substantial room for expansion in real-time signal 
connectivity. Weather-responsive V2I installations—such as environmental sensor stations, friction 
monitors, and automated anti-icing systems—were most prevalent in snow-intensive northern and 
mountain regions, where the mean density of weather-responsive units reached 2.14 units per mile, 
compared to only 0.64 units per mile in southern climates. Dynamic message signs (DMS) were widely 
distributed, with the highest concentration along freight-heavy interstate corridors. Collectively, these 
patterns reveal that V2I deployment is strongly influenced by regional operational priorities, 
availability of ITS investment, and perceived safety challenges. 
 

Table 4: V2I Asset Distribution 

V2I Asset Type Mean Density (per mile) SD Urban Mean Rural Mean 

RSUs 2.18 1.41 3.42 0.87 

SPaT Systems (binary %) 31% equipped — 47% 12% 
Weather-Responsive Sensors 1.32 0.91 1.06 1.57 
Dynamic Message Signs 0.74 0.38 0.98 0.41 
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Environmental, Geometric, and Operational Context 
The descriptive statistics for moderating conditions demonstrated substantial variation across 
environmental, geometric, and operational characteristics of highway segments. Environmental 
severity indices revealed that northern states experienced an average of 41.3 snow days per year, 
compared to 6–12 snow days in southern regions. Fog indices were particularly high in coastal and 
valley regions, averaging 18.6 fog events per quarter, while precipitation intensity showed strong 
seasonal clustering. Geometric profiles indicated notable differences between rural and urban 
corridors. Average horizontal curvature was significantly sharper in mountainous western highways 
(mean curvature radius: 512 m) compared with flat midwestern states (mean: 1,428 m). Lane counts 
ranged from 2-lane rural arterials to 8-lane metropolitan freeways. Vertical grade showed strong 
variability, with steep grades (>5%) concentrated in 17% of the sample. Operational metrics also varied 
widely. Average daily traffic (ADT) ranged from 8,200 vehicles/day in rural segments to 156,000 
vehicles/day in high-volume urban corridors. Truck percentages averaged 17.4%, but exceeded 30% 
along freight-dominated interstate corridors. Speed variability averaged 6.9 mph, with significantly 
higher variation on curves, grades, and congested urban bottlenecks. These descriptive results 
highlight the complex operational and environmental heterogeneity that contextualizes the impact and 
effectiveness of V2I system deployment. 
 

Table 5: Environmental, Geometric, and Operational Context 

Moderator Category Variable Mean SD Range 

Environmental Snow Days (annual) 29.4 18.1 0–81 
 Fog Index (events/quarter) 18.6 9.7 2–46 
 Precipitation Intensity (mm/hr) 4.8 2.9 0.2–13.7 
Geometric Curvature Radius (m) 1,046 512 210–2,400 
 Vertical Grade (%) 3.2 1.7 0–8.4 
 Lane Count 3.9 1.6 2–8 
Operational ADT (vehicles/day) 76,200 43,700 8,200–156,000 
 Truck Percentage (%) 17.4 8.3 4–38 
 Speed Variability (mph) 6.9 3.8 1.2–15.3 

 

Measurement Model Assessment (Outer Model) 
Assessment of the measurement model began with an evaluation of indicator reliability to ensure that 
each observable item contributed meaningfully to its corresponding latent construct. Outer loadings 
were examined for all reflective indicators associated with V2I Deployment, Crash Frequency, Crash 
Severity, Secondary Crash Risk, Behavioral Stability, Speed Variance, and 
Environmental/Geometric/Operational moderators. Consistent with recommended thresholds for 
Partial Least Squares Structural Equation Modeling (PLS-SEM), loading values of 0.708 or higher were 
considered acceptable, indicating that over 50% of the variance in the indicator was explained by the 
latent construct. The analysis showed that 87.3% of indicators exceeded the 0.708 threshold, 
demonstrating strong measurement reliability. A small number of indicators—mainly related to 
extreme weather frequency and rural crash exposure—displayed loadings between 0.612 and 0.682. 
These items were reviewed for conceptual relevance and retained due to their theoretical importance 
and acceptable increase in construct reliability when included. No indicators exhibited problematic 
cross-loadings, confirming that each item measured only its intended dimension. Overall, the indicator 
reliability results demonstrated that the measurement model was stable, conceptually coherent, and 
empirically robust. 
Once indicator reliability was confirmed, internal consistency reliability was assessed using Cronbach’s 
Alpha (α) and Composite Reliability (CR). All constructs exceeded the recommended α ≥ 0.70 and CR 
≥ 0.70 thresholds, with CR values ranging from 0.812 to 0.937, indicating high levels of internal 
consistency. Convergent validity was then examined through Average Variance Extracted (AVE), 
where AVE values above 0.50 indicate that a latent construct explains more than half of the variance in 
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its indicators. All constructs met or exceeded this criterion, with AVE values ranging from 0.53 to 0.71. 
Discriminant validity was evaluated using both the Fornell–Larcker criterion and the Heterotrait–
Monotrait (HTMT) ratio. Fornell–Larcker results showed that each construct’s square root of AVE 
exceeded its correlations with other constructs, confirming adequate discriminant separation. HTMT 
values for all construct pairs remained well below the conservative threshold of 0.85, ranging from 0.33 
to 0.74, indicating that constructs were empirically distinct. These results collectively confirmed that 
the measurement model demonstrated strong reliability, convergent validity, and discriminant 
validity, supporting the adequacy of the outer model prior to structural model interpretation. 

 
Table 6: Outer Loadings for Reflective Measurement Indicators 

Construct Indicator Loading Reliability Threshold Result 

V2I Deployment RSU Density 0.873 ≥0.708 Acceptable 

 SPaT Coverage 0.842 ≥0.708 Acceptable 
 DMS Presence 0.791 ≥0.708 Acceptable 
 Weather-Responsive Units 0.816 ≥0.708 Acceptable 
Crash Frequency Monthly Crash Count 0.883 ≥0.708 Acceptable 
 Rear-End Frequency 0.826 ≥0.708 Acceptable 
Crash Severity Fatal–Injury Ratio 0.764 ≥0.708 Acceptable 
 High-Severity Index 0.802 ≥0.708 Acceptable 
Secondary Crash Risk Queue-Related Collisions 0.856 ≥0.708 Acceptable 
 Upstream Collision Frequency 0.791 ≥0.708 Acceptable 
Speed Variance SD of Speed 0.824 ≥0.708 Acceptable 
 Hard-Braking Rate 0.781 ≥0.708 Acceptable 
Behavioral Stability Lane-Change Volatility 0.745 ≥0.708 Acceptable 
 Deceleration Smoothness 0.823 ≥0.708 Acceptable 

 
Table 7: Reliability and Convergent Validity Statistics 

Construct Cronbach’s Alpha 
(α) 

Composite Reliability 
(CR) 

AVE Threshold 
Met? 

V2I Deployment 0.891 0.923 0.715 Yes 

Crash Frequency 0.847 0.902 0.658 Yes 
Crash Severity 0.812 0.881 0.596 Yes 
Secondary Crash Risk 0.830 0.897 0.643 Yes 
Speed Variance 0.784 0.856 0.543 Yes 
Behavioral Stability 0.822 0.875 0.564 Yes 
Environmental 
Moderators 

0.754 0.839 0.517 Yes 

Geometric Moderators 0.726 0.814 0.531 Yes 
Operational Moderators 0.791 0.872 0.589 Yes 

 
Table 8: HTMT Ratios for Discriminant Validity 

Construct Pair HTMT Value Threshold (<0.85) Result 

V2I Deployment – Crash Frequency 0.61 <0.85 Valid 
V2I Deployment – Crash Severity 0.49 <0.85 Valid 
V2I Deployment – Behavioral Stability 0.74 <0.85 Valid 
Crash Frequency – Crash Severity 0.57 <0.85 Valid 
Crash Severity – Secondary Crash Risk 0.44 <0.85 Valid 
Behavioral Stability – Speed Variance 0.52 <0.85 Valid 
Environmental – Geometric Moderators 0.33 <0.85 Valid 
Operational – Geometric Moderators 0.47 <0.85 Valid 

 
Structural Model Assessment (Inner Model) 
Assessment of the structural (inner) model focused on evaluating collinearity among predictor 
constructs, the strength and significance of structural paths, and the explanatory and predictive power 
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of the model. Inner Variance Inflation Factors (VIFs) were first examined to ensure that the relationships 
among latent constructs did not suffer from multicollinearity that could distort path estimates. All inner 
VIF values for predictors of Crash Frequency, Crash Severity, Secondary Crash Risk, and Behavioral 
Stability ranged between 1.27 and 3.18, well below the conservative threshold of 5.0, indicating that 
collinearity was not a concern within the structural model. With acceptable collinearity levels 
confirmed, the model’s structural paths were estimated using bootstrapping with 10,000 resamples. 
The resulting path coefficients (β), t-values, and p-values indicated that V2I Deployment had 
statistically significant negative relationships with Crash Frequency (β = –0.412, p < .001) and Secondary 
Crash Risk (β = –0.373, p < .001), and a significant positive relationship with Behavioral Stability (β = 
0.544, p < .001). The path from V2I Deployment to Crash Severity was weaker and primarily indirect, 
consistent with the mediational structure tested later. These results establish the structural model as 
statistically sound and substantively meaningful for explaining safety-related outcomes. 
The explanatory power of the structural model was evaluated using the coefficient of determination 
(R²) for each endogenous construct. The model explained 46.7% of the variance in Crash Frequency (R² 
= 0.467), indicating moderate-to-substantial explanatory power in the context of transportation safety 
research. For Crash Severity, the model accounted for 38.3% of the variance (R² = 0.383) when 
incorporating mediating effects such as Speed Variance. Secondary Crash Risk was explained at 41.5% 
(R² = 0.415), while Behavioral Stability achieved an R² of 0.296, reflecting the influence of V2I 
Deployment alongside operational and environmental conditions. Effect sizes (f²) were computed to 
evaluate the relative contribution of each predictor. V2I Deployment showed a medium-to-large effect 
on Crash Frequency (f² = 0.214) and Secondary Crash Risk (f² = 0.187), and a medium effect on 
Behavioral Stability (f² = 0.156). Traffic Density exhibited a non-trivial effect on Crash Frequency (f² = 
0.133), while Environmental Severity and Geometry Complexity contributed smaller but meaningful 
incremental effects. Predictive relevance was assessed using the Stone–Geisser Q² statistic via 
blindfolding; Q² values were positive and substantive for all key endogenous constructs (Crash 
Frequency Q² = 0.314; Crash Severity Q² = 0.241; Secondary Crash Risk Q² = 0.289), indicating that the 
model possesses good out-of-sample predictive capability rather than simply fitting noise in the 
calibration sample. 
To complement traditional PLS-SEM evaluation criteria, the global model fit indices were inspected to 
provide an additional sense of how well the proposed structural relationships replicate the observed 
data patterns. The Standardized Root Mean Square Residual (SRMR) for the model was 0.061, below 
the commonly suggested threshold of 0.08, indicating acceptable overall fit. The Normed Fit Index 
(NFI) reached 0.923, suggesting that the structural model improves considerably over a null 
(independence) baseline. Chi-square–based global fit measures are interpreted cautiously in large 
samples, but the model’s relative fit statistics supported the adequacy of the specified relationships 
among V2I Deployment, behavioral and operational constructs, and crash-related outcomes. Taken 
together, the inner-model diagnostics—low collinearity, statistically significant structural paths, 
moderate-to-high R² values, meaningful f² effect sizes, positive Q² values, and acceptable global fit 
indices—provide strong evidence that the structural model is empirically robust and suitable for 
interpreting the direct and indirect roles of V2I systems in mitigating crash risks across U.S. highway 
networks. 

Table 9: Inner Model Collinearity and Structural Path Coefficients 

Endogenous Construct Predictor Inner VIF β t-value p-value Significant? 
Crash Frequency V2I Deployment 2.14 –0.412 9.321 < .001 Yes 
 Traffic Density 2.87 0.336 7.114 < .001 Yes 
 Geometry Complexity 1.93 0.192 4.882 < .001 Yes 
Crash Severity Speed Variance 2.21 0.403 7.912 < .001 Yes 
 V2I Deployment (direct) 1.74 –0.091 1.842 .068 No (weak) 
Secondary Crash Risk V2I Deployment 2.09 –0.373 8.144 < .001 Yes 
 Speed Harmonization 1.81 –0.298 6.017 < .001 Yes 
Behavioral Stability V2I Deployment 1.62 0.544 12.991 < .001 Yes 
 Environmental Severity 1.27 –0.163 3.244 .001 Yes 
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Table 10: R², f², and Q² for Endogenous Constructs 

Endogenous 
Construct 

R² Interpretation (Hair 
et al.) 

Key 
Predictor 

f² Effect Size Q² Predictive 
Relevance 

Crash Frequency 0.467 Moderate–Substantial V2I 

Deployment 

0.214 (medium–

large) 

0.314 Medium–High 

Crash Severity 0.383 Moderate Speed 

Variance 

0.179 (medium) 0.241 Medium 

Secondary Crash 

Risk 

0.415 Moderate V2I 

Deployment 

0.187 (medium) 0.289 Medium–High 

Behavioral Stability 0.296 Weak–Moderate V2I 

Deployment 

0.156 (medium) 0.201 Medium 

Speed Variance 0.312 Moderate V2I 

Deployment 

0.142 (medium) 0.218 Medium 

 
Table 11: Global Fit Indices for Structural Model 

Fit Index Value Recommended Threshold Interpretation 

SRMR 0.061 < 0.08 Acceptable global fit 
NFI 0.923 ≥ 0.90 Good incremental fit 
d_ULS 1.741 — (relative) Within acceptable range 
d_G 0.964 — (relative) Within acceptable range 
Chi-square (model) 1,284.6 — (sample-size sensitive) Interpreted with caution 

 

Structural Findings 
The structural analysis revealed that V2I Deployment had a strong and statistically significant negative 
effect on Crash Frequency, confirming its central role as a predictor of safety outcomes. The structural 
coefficient linking V2I Deployment → Crash Frequency (β = –0.412, t = 9.321, p < .001) demonstrates 
that greater deployment of connected roadside infrastructure corresponds with fewer monthly crash 
events along U.S. highway segments. This path represents one of the strongest direct effects in the 
model and is supported by the substantial R² value of 0.467, indicating that nearly half of the variation 
in crash frequency is explained by V2I Deployment, Traffic Density, and Geometry Complexity. In 
practical terms, this means that segments with higher RSU density, SPaT coverage, and weather-
responsive infrastructure tend to experience more stable speed harmonization, improved driver 
situational awareness, and reduced shockwave formation, all of which contribute to a measurable 
reduction in crash occurrence. The effect size (f² = 0.214) further validates V2I Deployment as a 
medium-to-large contributor in shaping crash outcomes. These results provide compelling evidence 
that the presence and intensity of V2I technology significantly influence safety performance at the 
crash-frequency level. 
Unlike crash frequency, which responds strongly to V2I Deployment through a direct effect, Crash 
Severity was influenced more heavily through indirect mechanisms. The direct effect from V2I 
Deployment → Crash Severity was weak and not statistically significant (β = –0.091, p = .068), 
suggesting that V2I systems do not immediately reduce the severity of crashes when they occur. 
However, the indirect effect via Speed Variance was substantial and statistically significant (indirect β 
= –0.214, t = 6.144, p < .001), indicating that V2I stabilizes driver behavior—especially speed 
fluctuations—thereby reducing the likelihood of high-impact, severe crashes. The combined total effect 
on Crash Severity (β_total = –0.305) reveals that while V2I systems may not directly lessen injury 
severity at the moment of impact, they effectively contribute to conditions that prevent crashes from 
escalating into high-energy events. The R² value of 0.383 indicates moderate explanatory power, and 
the mediational structure aligns with established transportation safety theory, where flow stability and 
uniform speed distributions play critical roles in mitigating crash severity. 
One of the most notable findings involves the role of V2I Deployment in reducing secondary crash risk, 
where the path coefficient V2I Deployment → Secondary Crash Risk was both significant and negative 
(β = –0.373, t = 8.144, p < .001). Secondary crashes often occur upstream of a primary incident due to 
late braking, insufficient reaction time, or sudden traffic disturbances. The structural model 
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demonstrated that V2I-enabled queue-warning systems, slowdown alerts, and dynamic message signs 
significantly reduce the propagation of traffic shockwaves, as evidenced by the strong effect of Speed 
Harmonization (β = –0.298, p < .001) on secondary crash risk. The R² value of 0.415 demonstrates that 
a substantial portion of secondary crash behavior can be explained by V2I communication and 
operational smoothing mechanisms. These findings emphasize that V2I systems not only prevent 
crashes but also significantly limit the spatial and temporal spread of incident-related risk by improving 
upstream driver awareness and reducing abrupt speed transitions. 
Structural results highlight the critical importance of Behavioral Stability—capturing lane-change 
volatility, hard braking patterns, and deceleration smoothness—as a behavioral mediator through 
which V2I systems exert safety benefits. The path from V2I Deployment → Behavioral Stability was 
highly significant (β = 0.544, t = 12.991, p < .001), showing that connected infrastructure produces more 
consistent driver behavior. Additionally, Behavioral Stability → Crash Frequency produced a strong 
negative effect (β = –0.358, t = 9.014, p < .001), confirming that behavioral uniformity reduces crash 
likelihood. The indirect effect of V2I Deployment on Crash Frequency through Behavioral Stability 
(β_indirect = –0.195) demonstrates that approximately 39% of the total safety effect of V2I systems 
operates through behavioral pathways, such as smoother merging decisions, earlier hazard 
anticipation, and reduced erratic maneuvers. These findings align closely with granular connected-
vehicle telemetry outputs, which showed measurable declines in speed variance and braking 
irregularities following V2I activation. Structural findings also revealed that the effectiveness of V2I 
systems depends heavily on environmental and operational contexts. Multi-group and moderation 
analyses indicated that snow intensity, fog frequency, roadway curvature, grade severity, and traffic 
density influenced the strength of structural relationships. For example, the negative effect of V2I 
Deployment on Crash Frequency nearly doubled in high-curvature corridors (β = –0.551) compared to 
straight roads (β = –0.267), demonstrating the enhanced safety contribution of V2I in geometrically 
complex environments. Similarly, environmental conditions amplified V2I effectiveness: in high-snow 
regions, the indirect stabilizing effect on Crash Severity was significantly larger due to the heightened 
value of real-time alerts under low visibility and low-friction conditions. Operational moderators such 
as truck percentage and ADT further shaped the structural dynamics, with V2I systems showing 
stronger effects in high-density, mixed-traffic conditions where flow stability is harder to maintain. 
These conditional effects reveal that V2I deployment is most effective when environmental and 
operational complexity increases, reinforcing the need for targeted deployment strategies based on 
roadway risk profiles. 
 

Table 12: Summary of Key Structural Paths and Their Interpretation 

Structural Path β t-
value 

p-
value 

Effect 
Type 

Interpretation 

V2I Deployment → Crash Frequency –
0.412 

9.321 < .001 Direct Strong crash-reducing effect 

V2I Deployment → Crash Severity –
0.091 

1.842 .068 Direct Weak, not significant 

V2I Deployment → Crash Severity (via 
Speed Variance) 

–
0.214 

6.144 < .001 Indirect Significant mediated effect 

V2I Deployment → Secondary Crash 
Risk 

–
0.373 

8.144 < .001 Direct Reduces secondary crash 
propagation 

V2I Deployment → Behavioral Stability 0.544 12.991 < .001 Direct Enhances smooth driving 
behavior 

Behavioral Stability → Crash 
Frequency 

–
0.358 

9.014 < .001 Direct Behavioral consistency 
reduces crashes 

Speed Harmonization → Secondary 
Crash Risk 

–
0.298 

6.017 < .001 Direct Improves upstream traffic 
safety 

 



Journal of Sustainable Development and Policy, September 2025, 38-81 

67 
 

Mediation Analysis (Indirect Effects) 

Mediation by Speed Variance 
The first mediation model examined whether Speed Variance operates as an intermediate mechanism 
through which V2I Deployment influences Crash Severity. In the baseline structural model, the total 
effect of V2I Deployment on Crash Severity was negative and statistically significant (β_total = –0.305, 
t = 8.462, p < .001), indicating an overall severity-reducing influence. When Speed Variance was entered 
as a mediator, the direct effect from V2I Deployment to Crash Severity decreased in magnitude and 
lost statistical significance (β_direct = –0.091, t = 1.842, p = .068), while the path from V2I Deployment 
to Speed Variance was strong and negative (β = –0.531, t = 11.201, p < .001), and the path from Speed 
Variance to Crash Severity was strong and positive (β = 0.403, t = 7.912, p < .001). The resulting indirect 
effect (V2I → Speed Variance → Crash Severity) was β_indirect = –0.214, t = 6.144, p < .001, confirming 
that a statistically significant proportion of V2I’s influence on crash severity operates through 
reductions in speed variability. The Variance Accounted For (VAF) for this mediation relationship was 
calculated as the ratio of the indirect effect to the total effect (VAF = –0.214 / –0.305 ≈ 0.70), indicating 
that approximately 70% of the total effect of V2I Deployment on Crash Severity is mediated through 
Speed Variance. This level of VAF is typically interpreted as full to strong partial mediation in PLS-
SEM contexts. Bootstrapping with 10,000 resamples yielded 95% confidence intervals for the indirect 
effect that did not cross zero (CI: –0.291, –0.143), providing additional support for the robustness of this 
mediated pathway. These findings demonstrate that V2I systems reduce the occurrence of severe 
crashes primarily by smoothing speed profiles, decreasing abrupt speed differentials, and lowering the 
kinetic energy involved when crashes occur. 
 

Table 13: Mediation Results: Speed Variance as a Mediator Between V2I Deployment and Crash Severity 

Effect 
Type 

Path β t-
value 

p-
value 

95% 
Bootstrapped CI 

Interpretation 

Total 
Effect 

V2I → Crash Severity –
0.305 

8.462 < .001 [–0.382, –0.217] Overall severity 
reduction 

Direct 
Effect 

V2I → Crash Severity –
0.091 

1.842 .068 [–0.189, 0.008] Non-significant when 
mediator included 

Indirect 
Effect 

V2I → Speed Variance 
→ Crash Severity 

–
0.214 

6.144 < .001 [–0.291, –0.143] Significant mediation 

Path a V2I → Speed Variance –
0.531 

11.201 < .001 [–0.611, –0.440] V2I reduces speed 
variance 

Path b Speed Variance → 
Crash Severity 

0.403 7.912 < .001 [0.298, 0.504] Higher variance increases 
severity 

VAF Indirect / Total 0.70 — — — Strong mediation 

 

Mediation by Driver Behavioral Stability 
The second mediation model evaluated Driver Behavioral Stability as a mechanism through which V2I 
Deployment influences Crash Frequency. Behavioral Stability was modeled as a latent construct 
indicated by lane-change volatility, hard-braking frequency, and deceleration smoothness derived 
from connected-vehicle telemetry. The path from V2I Deployment to Behavioral Stability was positive 
and strong (β = 0.544, t = 12.991, p < .001), indicating that increased V2I deployment is associated with 
smoother, more consistent driving behavior. In turn, Behavioral Stability had a significant negative 
effect on Crash Frequency (β = –0.358, t = 9.014, p < .001), suggesting that stable driving dynamics 
correspond with fewer crashes. 
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Table 14: Telemetry Statistics and Mediation via Driver Behavioral Stability 

Metric Pre-V2I 

Mean 

Post-V2I 

Mean 

% 

Change 

Related Path 

Lane-change volatility index (per 

10 km) 

4.21 3.73 –11.4% V2I → Behavioral Stability 

Hard-braking events (per 1,000 

vehicles) 

18.7 14.6 –22.1% Behavioral Stability → Crash 

Frequency 

SD of deceleration (m/s²) 1.82 1.53 –15.8% Behavioral Stability indicators 

Structural path β t-value p-value Interpretation 

V2I → Behavioral Stability 0.544 12.991 < .001 V2I improves behavioral 

stability 

Behavioral Stability → Crash 

Frequency 

–0.358 9.014 < .001 Stable behavior reduces crashes 

Indirect Effect (V2I → BS → Crash 

Frequency) 

–0.195 7.211 < .001 Significant mediation 

Total Effect (V2I → Crash 

Frequency) 

–0.391 10.288 < .001 Overall crash reduction 

VAF 0.50 — — 50% of effect via behavior 

 
The indirect effect of V2I Deployment on Crash Frequency through Behavioral Stability was β_indirect 
= –0.195, t = 7.211, p < .001. The total effect of V2I Deployment on Crash Frequency in this extended 
model was β_total = –0.391, t = 10.288, p < .001, while the direct effect (controlling for the mediator) 
remained significant but smaller (β_direct = –0.196, t = 5.684, p < .001). The resulting VAF = –0.195 / –
0.391 ≈ 0.50, indicating that about 50% of the total effect of V2I Deployment on Crash Frequency is 
transmitted through improvements in driver behavioral stability. Telemetry statistics showed that, 
after V2I activation in high-deployment corridors, average lane-change volatility decreased by 11.4%, 
hard-braking events per 1,000 vehicles decreased by 22.1%, and the standard deviation of deceleration 
profiles decreased by 15.8%, all consistent with the mediated structural pathways. 

Mediation by Traffic Flow Harmonization 
The third mediation model focused on Traffic Flow Harmonization as a mediator between V2I 
Deployment and Secondary Crash Risk. Flow Harmonization was represented by indicators such as 
flow breakdown probability, average shockwave speed, and speed consistency across lanes. The 
structural path from V2I Deployment to Flow Harmonization was positive and statistically significant 
(β = 0.497, t = 10.016, p < .001), indicating that greater V2I coverage improves the uniformity and 
stability of traffic flow. Flow Harmonization, in turn, exerted a significant negative effect on Secondary 
Crash Risk (β = –0.298, t = 6.017, p < .001), suggesting that stabilized traffic reduces the likelihood of 
secondary collisions forming upstream of primary incidents. 
 

Table 15: low Harmonization Indicators and Mediation Results 

Indicator / Effect Value 
(Pre) 

Value 
(Post) 

% 
Change 

Interpretation 

Flow breakdown probability 0.31 0.22 –29.0% Fewer breakdown events in V2I 
corridors 

Average shockwave speed (mph) 23.4 18.1 –22.6% Slower, less abrupt queue 
formation 

Inter-lane speed SD (mph) 7.3 5.8 –20.5% Improved cross-lane speed 
consistency 

Structural path β t-value p-value Interpretation 
V2I Deployment → Flow 
Harmonization 

0.497 10.016 < .001 V2I improves flow consistency 
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Flow Harmonization → Secondary 
Crash Risk 

–0.298 6.017 < .001 Harmonized flow reduces 
secondary crashes 

Indirect Effect (V2I → FH → 
Secondary Crash Risk) 

–0.148 5.003 < .001 Significant mediation 

Total Effect (V2I → Secondary Crash 
Risk) 

–0.373 8.144 < .001 Overall risk reduction 

Direct Effect (with mediator) –0.225 4.891 < .001 Partially mediated 
VAF 0.40 — — 40% via flow harmonization 

 
The indirect effect from V2I Deployment to Secondary Crash Risk via Flow Harmonization was 
β_indirect = –0.148, t = 5.003, p < .001. The total effect of V2I Deployment on Secondary Crash Risk was 
β_total = –0.373, t = 8.144, p < .001, and the direct effect remained significant but was attenuated when 
the mediator was included (β_direct = –0.225, t = 4.891, p < .001). The VAF ≈ 0.40, indicating that about 
40% of V2I’s overall impact on secondary crash risk is mediated through its effect on traffic flow 
harmonization and shockwave damping. Empirically, corridors with high V2I deployment exhibited 
reduced flow breakdown probability and lower shockwave propagation speeds, enabling drivers to 
encounter more gradual changes in traffic conditions rather than abrupt queues. 
Moderation Analysis (Conditional Influences) 

Environmental Moderators 
Moderation analysis examined whether the strength of V2I effects varied as a function of 
environmental conditions, including snowfall intensity, fog visibility index, and precipitation rate. 
Interaction terms were created (e.g., Snowfall × V2I, Fog × V2I) and tested within the PLS-SEM 
framework. Results indicated that the protective effect of V2I Deployment on Crash Frequency and 
Crash Severity was significantly stronger in harsh environmental conditions. For example, the 
interaction term Snowfall Intensity × V2I exhibited a significant negative coefficient on Crash 
Frequency (β = –0.121, t = 3.987, p < .001), indicating that V2I becomes more effective as snowfall 
increases. Similarly, the Fog Visibility Index × V2I interaction was significant for Secondary Crash Risk 
(β = –0.109, t = 3.451, p = .001), revealing that real-time alerts are particularly valuable when natural 
visibility is degraded. Precipitation rate also moderated the V2I–Crash Severity link (β = –0.097, t = 
2.984, p = .003), suggesting that weather-responsive warnings enhance driver preparation in heavy rain. 
 

Table 16: Environmental Moderation Coefficients 

Outcome Moderator 
Interaction 

β t-
value 

p-
value 

Interpretation 

Crash Frequency Snowfall Intensity × 
V2I 

–
0.121 

3.987 < .001 V2I more effective with heavy snow 

Secondary Crash 
Risk 

Fog Visibility Index × 
V2I 

–
0.109 

3.451 .001 V2I more protective in low visibility 

Crash Severity Precipitation Rate × 
V2I 

–
0.097 

2.984 .003 V2I better mitigates severity in 
heavy rain 

 

Geometric Moderators 
Geometric conditions were also found to significantly moderate V2I effects. Multi-group and 
interaction analyses showed that curvature severity, vertical grade, and lane-width variation altered 
the strength of the relationship between V2I Deployment and crash outcomes. For example, when 
segments were split into low-curvature and high-curvature groups, the effect of V2I on Crash 
Frequency was considerably stronger in high-curvature segments (β_high = –0.551) than in low-
curvature segments (β_low = –0.267), with the difference statistically significant (t = 3.884, p < .001). 
Steeper vertical grades also amplified V2I effectiveness, particularly for run-off-road and heavy-vehicle 
incidents. Lane-width variation exhibited a smaller, but still meaningful moderating effect, with 
narrower or inconsistent lane widths showing greater safety gains from V2I advisories regarding lane 
use and speed harmonization. 

Table 17: Multi-Group Geometric Moderation (V2I → Crash Frequency) 
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Geometric 
Factor 

Group β (V2I → Crash 
Frequency) 

t-
value 

p-value 
(difference) 

Interpretation 

Curvature 
Severity 

Low curvature –0.267 5.012 — Moderate effect 

 High curvature –0.551 7.631 3.884 (< .001) Much stronger effect on 
curves 

Vertical Grade Mild grade (< 3%) –0.298 4.224 — Moderate effect 
 Steep grade (≥ 3%) –0.473 6.289 2.941 (.003) Stronger on steep grades 
Lane-Width 
Variation 

Standard lanes –0.315 5.103 — Baseline effect 

 Narrow/variable 
lanes 

–0.429 5.887 2.276 (.023) Enhanced benefit in 
constrained cross-
sections 

 

Operational Moderators 
Operational conditions—specifically traffic density, truck percentage, and peak congestion levels—
were tested as moderators. Results showed that V2I Deployment had a significantly stronger safety 
effect under high traffic density than under low density; for example, the V2I → Crash Frequency path 
was β = –0.493 in high-density segments compared to β = –0.211 in low-density segments, with 
significant cross-group differences. Similarly, corridors with high truck percentages (> 25%) saw 
greater reductions in both Crash Frequency and Secondary Crash Risk, indicating that heavy-vehicle 
interactions particularly benefit from communication-based speed and lane guidance. Peak-period 
congestion also amplified V2I effects, as real-time alerts and harmonization advisories are more 
impactful when traffic is unstable and drivers face higher decision-making demands. 

Table 18: Multi-Group Operational Moderation (MGA Results) 

Moderator Group β (V2I → Crash 
Frequency) 

t-
value 

p-value 
(difference) 

Interpretation 

Traffic 
Density 

Low density –0.211 3.742 — V2I has moderate effect 

 High density –0.493 8.026 3.622 (< .001) Stronger impact in heavy 
traffic 

Truck 
Percentage 

Low truck 
share (< 15%) 

–0.259 4.011 — Baseline effect 

 High truck 
share (≥ 25%) 

–0.438 6.217 2.837 (.005) Greater safety benefit 
with more trucks 

Peak 
Congestion 

Off-peak –0.236 3.988 — Moderate effect 

 Peak periods –0.472 7.304 3.119 (.002) V2I more effective during 
congestion 

 

Multi-Group Analysis (MGA) 
Multi-Group Analysis (MGA) was conducted to explore whether the structural relationships identified 
in the PLS-SEM model differ across distinct roadway environments and geographic contexts. MGA 
tests whether structural path coefficients vary significantly between two or more groups, indicating 
that the strength of V2I Deployment’s impact is conditional on regional, environmental, and 
operational configurations. For this study, MGA was performed using bootstrapped path-comparison 
techniques with 10,000 resamples, allowing for robust detection of cross-group differences. Three sets 
of comparisons were examined: regional differences, rural vs. urban corridors, and weather severity 

tiers. For each comparison, structural paths linking V2I Deployment to Crash Frequency, Crash 
Severity, and Secondary Crash Risk were tested for statistically significant differences using 
nonparametric MGA procedures. 
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Regional Differences 
MGA results demonstrated substantial regional heterogeneity in the effectiveness of V2I Deployment. 
In comparing northern and southern states, the V2I → Crash Frequency path coefficient was 
significantly stronger in northern regions (β = –0.521) than in southern regions (β = –0.284), with the 
bootstrapped difference statistically significant (p = .004). The increased effectiveness in northern areas 
reflects both the harsher winter environments and greater operational reliance on weather-responsive 
V2I systems such as automated anti-icing units and visibility-warning technologies. For Crash Severity, 
the indirect V2I effect via Speed Variance was notably stronger in the northern tier (β_indirect = –0.278) 
than in the south (β_indirect = –0.142), consistent with the behavioral stabilization benefits of V2I under 
snow, ice, and low-friction conditions. 

Table 19: MGA Significance Tests for Regional Differences 

Comparison Path Northern 
β 

Southern 
β 

t-
value 

p-
value 

Significant? 

North vs. South V2I → Crash Frequency –0.521 –0.284 2.874 .004 Yes 
 V2I → Crash Severity 

(indirect) 
–0.278 –0.142 2.311 .021 Yes 

 V2I → Secondary Crash 
Risk 

–0.387 –0.251 2.008 .045 Yes 

Mountain vs. 
Coastal 

V2I → Crash Frequency –0.563 –0.293 3.417 .001 Yes 

 V2I → Secondary Crash 
Risk 

–0.412 –0.241 2.542 .012 Yes 

 V2I → Behavioral Stability 0.589 0.403 2.124 .034 Yes 

 
A second regional analysis compared mountainous regions against coastal regions. In mountainous 
corridors, characterized by steep grades, sharp curvature, and variable elevation, the effect of V2I 
Deployment on Crash Frequency was nearly double that observed in coastal regions (β_mountain = –
0.563 vs. β_coastal = –0.293). In addition, the effect on Secondary Crash Risk was significantly stronger 
in mountainous terrains (β = –0.412) than in coastal segments (β = –0.241), indicating that real-time 
queue and slope-related warnings are more effective where geometric exposure is high. These results 
confirm that V2I systems are most beneficial in geographically challenging contexts where natural 
environmental risk amplifies the value of real-time decision support. 

Rural vs. Urban Corridors 
MGA results showed pronounced differences in the structural effectiveness of V2I Deployment 
between rural and urban corridors. In urban areas, the path coefficient for V2I Deployment → Crash 
Frequency was β_urban = –0.553, substantially stronger than the rural coefficient β_rural = –0.261, with 
the difference statistically significant (p = .003). This disparity reflects the greater prevalence of 
congestion, traffic turbulence, and multi-lane interactions in urban highways—all of which magnify 
the benefits of speed harmonization and real-time signaling provided by V2I systems. 
For Crash Severity, urban corridors again showed a stronger indirect effect mediated through Speed 
Variance (β_urban_indirect = –0.233) than rural corridors (β_rural_indirect = –0.116). The presence of 
SPaT systems, dense RSU deployment, and dynamic message signs in urban areas amplifies their 
moderating influence on speed fluctuations. Meanwhile, V2I’s effect on Secondary Crash Risk was 
significant in both contexts, but stronger in urban environments (β = –0.418 vs. β = –0.292). Urban 
segments often experience more complex queue propagation, making queue-warning and incident-
detection systems particularly effective at preventing secondary collisions. These MGA results 
underscore that V2I technologies yield their greatest benefits in high-density, multi-lane environments 
with prevailing congestion-driven risks. 
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Table 19. Urban–Rural MGA Path Comparison 
 

Path Urban β Rural β t-value p-value Interpretation 

V2I → Crash Frequency –0.553 –0.261 3.021 .003 Stronger urban effect 

V2I → Crash Severity (indirect) –0.233 –0.116 2.187 .029 Mediation stronger in urban areas 

V2I → Secondary Crash Risk –0.418 –0.292 2.642 .009 Higher urban protection 

V2I → Behavioral Stability 0.598 0.419 2.903 .004 Urban stability gains larger 

 
Weather Severity Tiers 
The third set of MGA comparisons evaluated the moderating role of weather severity by dividing 
segments into high-severity (frequent snow, fog, or heavy precipitation) and low-severity tiers. The 
effectiveness of V2I Deployment on crash outcomes was significantly amplified in high-severity 
weather environments. For Crash Frequency, the V2I effect was β_high = –0.508, compared to β_low = 
–0.276, indicating nearly double the safety benefit under challenging weather conditions. The influence 
on Crash Severity—especially via the Speed Variance pathway—was also more pronounced in severe 
weather regions (β_high_indirect = –0.298 vs. β_low_indirect = –0.101). High-severity areas benefit 
more from weather-responsive systems, including automated pavement sensors, fog-warning 
broadcasts, and dynamic anti-icing advisories, which explain the greater effect magnitude. For 
Secondary Crash Risk, queue-warning, slowdown advisories, and event detection were significantly 
more effective in high-severity weather corridors (β_high = –0.447) compared with low-severity 
corridors (β_low = –0.234). Given that adverse weather increases stopping distances, reduces visibility, 
and destabilizes flow, V2I systems play a more critical role in mitigating secondary collisions. 

 

Table 20. MGA for Weather-Severity Tiers 
 

Path High-
Severity β 

Low-
Severity β 

t-
value 

p-
value 

Interpretation 

V2I → Crash 
Frequency 

–0.508 –0.276 3.447 .001 Stronger effect in harsh weather 

V2I → Crash Severity 
(indirect) 

–0.298 –0.101 3.112 .002 Better severity mitigation in severe 
weather 

V2I → Secondary 
Crash Risk 

–0.447 –0.234 3.684 < .001 Significantly improved secondary 
crash protection 

V2I → Speed Variance –0.613 –0.381 2.889 .005 Greater smoothing of speed in 
harsh conditions 

 
DISCUSSION 
The results of this study demonstrate that Vehicle-to-Infrastructure (V2I) communication systems 
significantly reduce crash frequency, crash severity, and secondary crash formation across U.S. 
highway networks, confirming the theoretical claims and empirical findings of earlier intelligent 
transportation systems (ITS) research. The strong negative relationship between V2I Deployment and 
Crash Frequency (β = –0.412) aligns closely with the work of Yao et al. (2023), who found substantial 
reductions in rear-end and lane-change conflicts following roadside unit (RSU) activation in controlled 
freeway corridors. Similarly, the observed decrease in crash events is compatible with the trajectory-
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level safety improvements identified in simulated environments by Shahriar et al. (2023) and real-world 
deployments documented by the U.S. DOT Connected Vehicle Pilot results (2018). The present study 
advances these findings by demonstrating that the relationship holds not only under controlled or pilot 
conditions but across a multi-state, multi-year observational dataset, thereby strengthening the external 
validity of V2I safety claims. The moderating effects of road geometry and traffic density further 
corroborate earlier research showing that V2I systems are particularly effective under high-risk 
conditions such as steep grades, tight curvature, and heavy congestion, as reported by Rezaee Jordehi 
et al. (2024). The significant predictive relevance (Q²) values further substantiate that V2I deployments 
do not merely correlate with safety benefits but offer real explanatory and predictive value. These 
findings reinforce the position that V2I systems transition connected vehicle concepts from theoretical 
frameworks into demonstrable operational safety improvements, consistent with the progression noted 
in studies by Yi et al. (2024). 
The present study’s evidence that V2I deployment substantially reduces crash frequency complements 
similar findings from empirical and simulation-based research in the field of connected vehicle 
technologies. The reduction in crashes observed here echoes the results of Khan et al. (2025), who 
reported reductions of 20–35% in conflict points following V2I-enabled speed harmonization 
interventions. In studies by Dey et al. (2016), freeway corridors equipped with queue-warning systems 
exhibited fewer abrupt decelerations and a corresponding decline in primary crash formation, 
mirroring the behavioral adjustments captured in the current dataset. The present results extend these 
findings by providing nuanced evidence showing that V2I Deployment has a stronger effect in 
northern, mountainous, and urban regions. This is consistent with earlier claims by Yao et al. (2023), 
who argued that V2I benefits intensify under operational stressors such as adverse weather and 
complex geometry. The negative effect size of V2I on crash frequency observed in this study (f² = 0.214) 
also resonates with the medium-to-large effect sizes reported in crash-frequency modeling by Gozalvez 
et al. (2012). Previous studies generally relied on simulation environments to infer safety effects, 
whereas the present study uses a multi-year observational dataset that incorporates naturally occurring 
traffic patterns, environmental randomness, and real-world driver behavior. These strengths allow the 
present study to confirm earlier findings while expanding them into new contexts, demonstrating that 
V2I technology provides large-scale, consistent crash-mitigating benefits. By situating these results 
within broader empirical patterns, the study reinforces established theoretical frameworks while also 
providing new evidence that V2I systems act as stabilizing mechanisms in operationally high-risk 
environments. 
The mediation findings reveal that V2I deployment influences crash severity primarily through its 
ability to reduce speed variance rather than through a strong direct effect. This aligns with the results 
of studies such as Rezaee Jordehi et al. (2024), which concluded that speed harmonization is a dominant 
mechanism in preventing severe collisions. The significant indirect effect of V2I Deployment on Crash 
Severity (β_indirect = –0.214) is consistent with research by Dey et al.(2016), who found that advanced 
driver alerts and automated messaging reduce kinetic energy at impact by promoting earlier and 
smoother deceleration. This study’s finding that approximately 70% of the variance in Crash Severity 
is mediated through speed variance (VAF = 0.70) extends these earlier findings by quantifying the 
magnitude of this mechanism within a large naturalistic dataset. Prior crash severity models, such as 
those by Khan et al. (2025), noted that speed variance is a stronger determinant of crash severity than 
mean speed—a pattern clearly supported by the strength of the Speed Variance → Crash Severity path 
(β = 0.403). The results also align with trajectory-level behavioral research showing that V2I warnings 
reduce abrupt braking and near-crash events. The present study deepens these insights by linking 
telemetric behavioral indicators—such as hard-braking events and deceleration smoothness—to 
systemic crash-severity outcomes across a geographically diverse network. Previous research has 
frequently relied on localized pilot sites, but the present findings demonstrate that speed-related 
mediation mechanisms generalize across climates, geometries, and diverse driver populations, 
reinforcing theoretical claims about V2I’s behavioral impact. 
The strong negative effect of V2I Deployment on Secondary Crash Risk builds upon prior studies that 
have identified the importance of anticipatory driver information during incident-induced congestion. 
The observed structural relationship (β = –0.373) parallels findings from the Wyoming CV Pilot (U.S. 
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DOT, 2020), where V2I-enabled hazard alerts reduced secondary collisions by improving upstream 
driver reaction time. Research by Yusuf et al. (2024) also noted that sudden drops in speed propagate 
rapidly upstream, forming shockwaves that significantly heighten the likelihood of secondary 
crashes—an effect that can be mitigated through timely warnings. The present study’s findings that 
traffic flow harmonization mediates approximately 40% of V2I’s influence on secondary crashes extend 
this earlier work by identifying the quantitative strength of shockwave dampening mechanisms within 
real operational deployments. These outcomes align with earlier simulation results by Yi et al. (2024), 
who demonstrated that connected-vehicle alerts significantly reduce the magnitude and speed of 
backward-propagating shockwaves. Unlike previous studies limited to specific corridors or controlled 
settings, this study uses multi-state observational data and identifies consistent secondary crash 
reductions across both rural and urban highways. The enhanced V2I performance in harsh weather or 
steep-grade conditions is also consistent with results by Park and Lee (2019), suggesting that the 
interplay between environmental stressors and V2I coordination critically affects secondary crash 
development. The present study contributes to the literature by offering an integrated structural 
perspective linking V2I deployment, flow harmonization, and secondary crash behavior within a 
comprehensive analytical framework. 
The study’s findings show that behavioral stability—characterized by reduced lane-change volatility, 
smoother deceleration patterns, and fewer hard-braking events—serves as an important mediator 
linking V2I Deployment to reductions in crash frequency. This supports earlier research by Dixit et al. 
(2020), who reported that connected-vehicle warnings promote smoother vehicle trajectories and fewer 
erratic maneuvers. The strong structural path from V2I Deployment → Behavioral Stability (β = 0.544) 
aligns with similar results from transit cooperative research by Talebpour and Mahmassani (2016), who 
found that cooperative messaging enhances lane discipline and reduces turbulence in mixed traffic. 
The present study advances this body of work by demonstrating that behavioral stability accounts for 
approximately 50% of the total effect of V2I Deployment on crash frequency. Studies using naturalistic 
driving data, such as those by Ben Ameur et al. (2025), found that connected-vehicle alerts reduce 
hazardous behavior by improving driver anticipation of downstream events, which is fully consistent 
with the reductions in lane-change volatility and hard-braking observed here. Furthermore, the broader 
dataset used in this study—spanning thousands of highway segments and multiple regions—offers a 
more comprehensive validation of behavioral mechanisms than earlier small-scale trials. This broadens 
the empirical base of behavioral safety research and indicates that V2I mechanisms influence not only 
immediate driver reactions but also network-wide patterns of flow stability, consistent with theoretical 
claims by Dey et al., (2016). 
The moderation and Multi-Group Analysis results reveal that V2I effectiveness varies across 
environmental, geometric, and operational contexts, confirming and extending trends identified in 
earlier studies. The stronger V2I effects observed in northern, mountainous, and high-density regions 
align with findings by Adnan Yusuf et al. (2024), who reported that adverse weather, complex 
geometry, and heavy traffic amplify crash exposure and increase the demand for real-time operational 
guidance. The present study’s demonstration that snow, fog, and heavy precipitation significantly 
enhance V2I effectiveness parallels the conclusions of Khan et al. (2025), who emphasized the 
disproportionate safety benefits of real-time warnings under low-visibility conditions. Similarly, the 
greater V2I effect in urban regions aligns with the findings of Rezaee Jordehi et al. (2024), who 
documented that SPaT messaging and speed guidance are more influential in congested, signal-dense 
environments. MGA comparisons showing substantial V2I benefits in high-truck-percentage corridors 
also resonate with research by Yi et al. (2024), who argued that connected-vehicle technologies hold 
particular promise for freight-dominated traffic streams. The present study extends prior work by 
empirically demonstrating, through structural comparisons, that environmental and geometric severity 
can nearly double the impact of V2I systems. These findings confirm the importance of context-
sensitive deployment strategies and demonstrate that earlier observations made in specific weather or 
traffic conditions are generalizable across a broad roadway sample. 
Taken together, the results of this study provide strong empirical support for the broader theoretical 
frameworks that view connected-vehicle technologies as essential components of modern proactive 
safety systems. The structural model’s demonstration that V2I systems improve traffic flow stability, 
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reduce behavioral turbulence, and dampen shockwaves aligns with system-level safety theories 
articulated by Rezaee Jordehi et al.(2025)and later refined in connected-vehicle frameworks by Adnan 
Yusuf et al.(2024). The integrated mechanisms identified in the present study—behavioral mediation, 
speed variance reduction, and harmonization of traffic flow—reflect the layered structure of risk factors 
described in multi-stage crash formation theories, which emphasize that driver perception, reaction 
time, kinematics, and flow stability interact collectively to influence crash outcomes. The findings also 
support arguments by ITS researchers such as Ben Ameur et al. (2025), who posit that V2I technologies 
serve as “risk compensators” that offset environmental and operational volatility. By demonstrating 
that V2I systems exert stronger effects under adverse conditions and complex geometries, the study 
validates the concept that connected infrastructure functions as a resilience-enhancing element in 
roadway networks. These theoretical consistencies, combined with empirical confirmation across 
multiple regions and roadway designs, suggest that V2I systems are not merely additive technologies 
but foundational components of next-generation safety architectures. 
CONCLUSION 
The findings of this study provide comprehensive empirical evidence that Vehicle-to-Infrastructure 
(V2I) communication systems serve as a critical component in enhancing roadway safety across U.S. 
highway networks by significantly reducing crash frequency, mitigating crash severity, and lowering 
the likelihood of secondary crash formation. Through the integration of multi-state observational data, 
environmental and geometric characteristics, traffic operations metrics, and connected-vehicle 
telemetry, the study demonstrates that V2I deployment—comprising roadside units, SPaT systems, 
dynamic message signs, and weather-responsive infrastructure—generates substantial safety benefits 
that extend beyond controlled pilot studies into real-world, large-scale highway environments. The 
Partial Least Squares Structural Equation Modeling (PLS-SEM) framework used in the analysis reveals 
that these benefits are derived not only from direct reductions in crash occurrence but also from indirect 
pathways involving improved speed stability, enhanced driver behavioral consistency, and more 
harmonized traffic flow conditions. The results further show that V2I systems are most effective in 
regions with complex geometric layouts, harsh weather exposure, high truck percentages, and elevated 
traffic density, indicating that the technology operates as a context-sensitive, resilience-strengthening 
mechanism within the transportation system. Multi-group comparisons confirm that northern, 
mountainous, and urban corridors experience disproportionately higher safety gains, underscoring the 
importance of strategic deployment in high-risk settings. By quantifying the structural, mediated, and 
moderated relationships between V2I deployment and multiple safety outcomes, this research 
contributes to the broader body of ITS literature demonstrating that connected infrastructure 
significantly enhances operational stability and reduces the systemic vulnerabilities that contribute to 
crash formation. Although the observational nature of the dataset limits causal inference, the 
consistency, magnitude, and predictive strength of the findings offer compelling justification for 
expanded investment in V2I technologies as part of national efforts to modernize transportation 
infrastructure and support safer, data-driven mobility ecosystems. 
RECOMMENDATIONS 
Based on the empirical evidence demonstrating the substantial safety benefits of Vehicle-to-
Infrastructure (V2I) systems, several key recommendations emerge for policymakers, transportation 
agencies, and infrastructure planners aiming to enhance roadway safety and operational efficiency 
across U.S. highway networks. First, the findings underscore the importance of prioritizing V2I 
deployment in regions exhibiting elevated crash risk, such as northern states with severe winter 
conditions, mountainous corridors with complex geometry, and urban freeways with high traffic 
density, as these areas experience the greatest marginal safety gains. Second, transportation agencies 
should expand RSU density, SPaT coverage, and dynamic message sign integration to create more 
comprehensive and seamless communication corridors, ensuring that real-time warnings reach drivers 
consistently and at sufficient distances to meaningfully influence behavior. Third, investment in 
weather-responsive V2I technologies—such as friction sensors, automated anti-icing systems, and fog-
warning modules—should be increased in locations with frequent snow, fog, or heavy rainfall, given 
the demonstrated amplification of V2I effectiveness in adverse weather conditions. Fourth, 
implementation strategies should prioritize harmonizing speed, enhancing lane-discipline advisories, 
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and improving upstream hazard detection, as these behavioral mechanisms mediate a large portion of 
V2I’s impact on crash reduction. Fifth, V2I deployments should be integrated with connected-vehicle 
pilot programs and data-sharing frameworks to maximize the predictive and operational value of 
telemetry data; doing so can support adaptive algorithms capable of real-time traffic flow optimization 
and incident prevention. Sixth, agencies should adopt standardized V2I performance metrics and 
continuous monitoring procedures to evaluate system reliability, latency, and communication 
integrity, ensuring that infrastructure systems remain responsive as traffic demands evolve. Finally, 
sustained federal and state funding, along with cross-agency coordination, is essential to scaling V2I 
systems nationwide, reducing fragmentation in deployment methodologies, and supporting long-term 
research into interoperability, cybersecurity, and human factors. Collectively, these recommendations 
provide a practical roadmap for leveraging V2I technologies to enhance roadway safety, optimize 
traffic operations, and accelerate the transition toward fully connected and intelligent transportation 
ecosystems. 
LIMITATION 
Although this study provides robust empirical insights into the safety impacts of Vehicle-to-
Infrastructure (V2I) systems across U.S. highway networks, several important limitations must be 
acknowledged to contextualize the findings. First, the study relies on observational multi-state data, 
which, despite its breadth and ecological validity, cannot fully isolate causal relationships due to 
potential unmeasured confounders such as enforcement intensity, regional driving culture, and 
temporal changes in roadway maintenance practices. Second, the accuracy and completeness of crash 
records, roadway geometry files, and connected-vehicle telemetry depend on reporting consistency 
across state agencies, which may introduce measurement variability, particularly in rural regions with 
less sophisticated detection technologies. Third, V2I deployment intensity was measured through 
infrastructure presence and density rather than functional performance indicators such as 
communication latency, packet loss, or reliability of message broadcasting; thus, deployment level does 
not necessarily equate to operational effectiveness. Fourth, while the PLS-SEM framework is well suited 
to handling complex relationships and non-normal data, its reliance on linear structural assumptions 
may underrepresent nonlinear or threshold effects related to driver behavior, environmental stressors, 
or geometric complexity. Fifth, the moderating effects of weather severity and geometric risk were 
based on aggregated indices rather than granular, event-specific conditions, limiting the study’s ability 
to capture micro-scale context such as moment-to-moment friction changes or rapidly evolving fog 
events. Sixth, the connected-vehicle telemetry used to model behavioral and flow-related mechanisms 
primarily reflects certain vehicle populations and may not represent all vehicle types, particularly older 
vehicles lacking advanced sensing technologies. Finally, because V2I deployments evolve over time 
and technologies mature, the dataset does not reflect future advancements such as 5G-enabled message 
delivery, emerging cybersecurity architectures, or integration with automated driving systems, which 
may alter the magnitude or direction of V2I safety impacts. These limitations highlight the need for 
continued research using more granular, real-time data, broader technology performance metrics, and 
experimental or quasi-experimental methods to refine causal inferences and deepen understanding of 
V2I’s long-term safety contributions. 
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