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Abstract

This study quantitatively examined how blockchain orchestration and Byzantine fault tolerance (BFT) were
associated with manufacturing robustness in cyber-physical supply chain networks under varying workload
and fault conditions. A controlled, scenario-based experimental design was implemented using network-run-
level simulation outputs and system log data, enabling systematic comparison across three coordination
regimes: centralized coordination, non-BFT blockchain coordination, and BFT-enabled blockchain
orchestration. The analytic sample comprised 360 validated network runs spanning low, medium, and high
event loads and low, moderate, and elevated fault intensities. Manufacturing robustness was operationalized
using downtime probability, throughput stability, schedule deviation, recovery-time behavior, service level
variance, and inventory oscillation indicators, while consensus performance and data integrity were modeled
as explanatory mechanisms. Descriptive findings showed that centralized coordination achieved the highest
mean throughput (920.3 TPS) and lowest mean confirmation latency (1.12 seconds) but exhibited higher
downtime probability (5.20%) and longer recovery time (49.0 minutes) under fault stress. BFT-enabled
orchestration demonstrated lower throughput (547.0 TPS) and higher confirmation latency (4.71 seconds) but
achieved superior robustness outcomes, including lower downtime probability (2.80%), reduced schedule
deviation (14.3 minutes), and faster recovery (31.3 minutes). Correlation analysis indicated strong
associations between consensus performance and robustness, with deadline adherence negatively correlated
with downtime probability (r = —0.66) and recovery time (r = —0.65). Data integrity metrics were also strongly
related to robustness, as data completeness showed a negative correlation with downtime probability (r =
—0.61). Hierarchical regression results revealed that coordination regime and BFT configuration explained
31% of the variance in manufacturing robustness, which increased to 63% when consensus performance and
data integrity were included. Mediation analysis showed that consensus performance and data integrity jointly
accounted for a substantial portion of the architecture effect, with a total indirect effect of —0.21. Interaction
models further indicated that the robustness advantages of BFT-enabled orchestration strengthened under
higher workload and fault intensity. Ouverall, the findings demonstrated that manufacturing robustness in
cyber-physical supply chains was shaped by coordination architecture through measurable performance and
integrity mechanisms, providing quantitative evidence on how distributed trust and fault tolerance influenced
operational stability under stress.
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INTRODUCTION

Blockchain-orchestrated manufacturing systems are grounded in the formal definition of blockchain as
a distributed digital ledger that records transactions across multiple networked nodes in a
synchronized and immutable manner. Each transaction is cryptographically linked to previous records,
forming a continuous and tamper-resistant chain of data blocks (Rahman et al., 2020). Within
manufacturing environments, blockchain is not limited to financial exchanges but operates as an
infrastructural coordination layer that records operational events, process states, and transactional
interactions across organizational boundaries. Cyber-physical systems are defined as tightly integrated
assemblies of computational logic, communication networks, and physical components that interact
continuously through sensing, control, and actuation mechanisms. In manufacturing contexts, cyber-
physical systems encompass industrial sensors, programmable logic controllers, robotics, embedded
software, and analytics platforms that translate physical production activities into structured digital
data (Zhao et al., 2021).

Figure 1: Blockchain-Orchestrated Manufacturing System
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Supply chain networks are structured as interconnected systems of material flows, information
exchanges, and financial transactions linking suppliers, manufacturers, logistics providers,
distributors, and service partners across geographic regions. When cyber-physical systems are
embedded across these networks, supply chains evolve into cyber-physical supply chain networks
characterized by continuous data generation, real-time observability, and algorithmic coordination.
Blockchain orchestration introduces a shared digital backbone that records cyber-physical events as
verifiable system states accessible to authorized participants. This integration establishes a unified
operational record that supports synchronization across multiple actors without reliance on centralized
control. From a quantitative perspective, such systems are analyzed using measurable properties
including transaction latency, data consistency rates, synchronization accuracy, system throughput,
and fault tolerance thresholds (Bodkhe et al., 2020). These properties define the analytical foundation
for examining manufacturing robustness within blockchain-orchestrated cyber-physical supply chain
networks.

Byzantine fault tolerance is defined as the ability of a distributed system to maintain correct and
consistent operation even when a portion of its components behave unpredictably, maliciously, or
inconsistently. In manufacturing supply chain networks, faults may arise from sensor malfunctions,
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communication disruptions, compromised devices, erroneous data reporting, or adversarial
manipulation of digital infrastructure (Vatankhah Barenji et al.,, 2020). Traditional centralized
manufacturing information systems exhibit vulnerability to such faults due to single points of failure
and limited cross-organizational validation. Byzantine fault-tolerant mechanisms introduce
mathematically defined resilience by enabling consensus among distributed nodes as long as faulty
participants remain below a specified proportion of the total network. Within blockchain architectures,
Byzantine fault tolerance governs how transactions are validated, ordered, and committed to the
shared ledger under uncertain conditions. When applied to cyber-physical supply chain networks,
these mechanisms ensure that operational data generated by distributed manufacturing assets remains
consistent, verifiable, and resistant to manipulation (Zhao et al., 2020). Quantitative system analysis
treats Byzantine fault tolerance as a reliability parameter that influences consensus latency, message
complexity, network bandwidth consumption, and system availability. These parameters directly
affect manufacturing performance metrics such as downtime frequency, production scheduling
stability, coordination accuracy, and recovery speed following disturbances. Byzantine fault tolerance
therefore functions as a measurable safeguard against systemic degradation in distributed
manufacturing environments. Its analytical relevance lies in the fact that manufacturing robustness
depends not only on physical redundancy and inventory buffers but also on the integrity and
consistency of data used for operational decision-making. By bounding the impact of faulty or
malicious nodes, Byzantine fault-tolerant blockchain systems provide a quantifiable foundation for
resilient coordination across cyber-physical manufacturing networks (Leng et al., 2020).
Cyber-physical supply chain networks are defined by continuous interactions between physical
production processes and digital control systems across multiple organizational tiers. Sensors
embedded in manufacturing equipment, transportation assets, storage facilities, and handling systems
generate time-stamped data reflecting machine status, material movement, environmental conditions,
and process performance. This data feeds optimization models, scheduling algorithms, inventory
control systems, and logistics coordination platforms that govern supply chain operations (Ratasich et
al., 2019). From a quantitative perspective, cyber-physical supply chains are modeled as dynamic
networks composed of interdependent nodes, stochastic inputs, and feedback loops. Blockchain
orchestration introduces a standardized mechanism for recording, validating, and sharing cyber-
physical events across all participating entities. Each physical event captured by sensors can be
translated into a digital transaction that becomes part of a shared and immutable system record.
Quantitative performance indicators such as data latency, synchronization error, transaction finality
time, and system throughput become central to evaluating network behavior. The cyber-physical
nature of these systems creates bidirectional causality, where digital decisions influence physical
actions and physical outcomes generate new data streams (Vo et al., 2018). These interactions are
analytically represented using hybrid modeling approaches that combine discrete-event simulation,
control theory, and network analysis. In manufacturing contexts, such models enable systematic
evaluation of system behavior under varying demand patterns, equipment failures, and logistical
disruptions. Cyber-physical supply chain networks therefore constitute measurable systems whose
performance characteristics can be quantified, simulated, and statistically analyzed. This quantifiability
provides the basis for rigorous assessment of blockchain-orchestrated coordination mechanisms within
manufacturing environments (Giirpinar et al., 2021).

Manufacturing robustness is defined as the capacity of production systems to maintain stable
operational performance under variability, disturbances, and structural uncertainty. This attribute is
quantitatively assessed using indicators such as throughput stability, recovery time, inventory
variance, service level consistency, and deviation from planned production schedules. In distributed
manufacturing networks, robustness depends on synchronized decision-making, accurate data
exchange, and effective fault containment mechanisms (Jabbar et al., 2021). Cyber-physical integration
enhances robustness by enabling continuous monitoring of physical processes and rapid response
through automated control actions. Blockchain orchestration further strengthens robustness by
ensuring that operational data remains consistent, traceable, and verifiable across all participating
entities. When combined with Byzantine fault tolerance, blockchain systems prevent corrupted,
delayed, or manipulated data from propagating through the manufacturing network. Quantitative
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robustness analysis often employs simulation-based stress testing, probabilistic reliability modeling,
and network resilience metrics. These methods evaluate how manufacturing systems respond to
disruptions affecting suppliers, production facilities, transportation links, or information systems.
Robustness is therefore treated as an emergent system-level property resulting from the interaction of
physical assets, digital infrastructure, and coordination mechanisms (Wu et al., 2021). Blockchain-
orchestrated cyber-physical supply chain networks provide structured and high-integrity data
environments that support precise measurement of robustness-related variables. This analytical
framing positions robustness as a central dependent variable in quantitative studies of advanced
manufacturing systems operating under complex and distributed conditions.

Figure 2: Manufacturing Robustness Quantitative Framework
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International manufacturing networks operate across multiple geographic regions, regulatory
frameworks, and institutional environments. These networks involve coordination among
geographically dispersed suppliers, production facilities, logistics providers, and distribution partners.
Quantitatively, international manufacturing networks exhibit increased uncertainty, extended lead
times, and greater exposure to operational disruptions (Rejeb et al., 2019). Distributed coordination
mechanisms are therefore essential for maintaining stability and consistency across borders.
Blockchain-based orchestration enables shared visibility and standardized record-keeping among
international partners without reliance on centralized authorities. Cyber-physical systems deployed
across global manufacturing facilities generate harmonized data streams reflecting real-time
operational conditions. Byzantine fault tolerance ensures that no single regional node can compromise
the integrity of the shared system record. Quantitative coordination metrics such as synchronization
delay, reconciliation frequency, audit accuracy, and data consistency rates are used to evaluate system
performance in international contexts (Rejeb et al., 2019). These metrics support comparative analysis
across regions, industries, and organizational structures. International manufacturing networks thus
provide a meaningful empirical and analytical context for examining blockchain-orchestrated cyber-
physical supply chain systems as globally scalable coordination infrastructures.

Quantitative analysis of blockchain-orchestrated cyber-physical supply chain networks relies on
integrative modeling approaches drawn from systems engineering, operations research, and computer
science. Blockchain performance is evaluated using metrics such as consensus latency, transaction
throughput, fault tolerance thresholds, and communication overhead. Cyber-physical systems are

37



Journal of Sustainable Development and Policy, September 2023, 34-72

modeled using hybrid system frameworks that capture interactions between digital control logic and
physical processes (Bada et al.,, 2021). Supply chain dynamics are represented using stochastic
programming, network flow optimization, and agent-based modeling. Combined models assess how
blockchain-based coordination influences manufacturing robustness under varying operational
conditions. Simulation experiments generate measurable outputs such as downtime probability,
inventory deviation, service level fluctuation, and coordination accuracy. These outputs enable
statistical evaluation of system behavior under controlled scenarios. Quantitative modeling therefore
provides the methodological foundation for examining the performance characteristics of blockchain-
orchestrated cyber-physical manufacturing networks (Mohiul, 2020; Pitropakis et al., 2019).

Data integrity is a foundational requirement for quantitative decision-making in manufacturing
systems (Jinnat & Kamrul, 2021; Rabiul & Samia, 2021). Cyber-physical supply chains depend on
accurate sensor data to support production planning, quality control, maintenance scheduling, and
logistics coordination. Blockchain consensus mechanisms transform distributed data inputs into a
unified and verifiable system record accessible to all authorized participants. Byzantine fault tolerance
strengthens this process by mathematically constraining the influence of erroneous or malicious nodes
(Mohiul & Rahman, 2021; Rahman & Abdul, 2021; Ramanan et al., 2021). Quantitative coordination
metrics such as data consistency rate, synchronization accuracy, error propagation probability, and
reconciliation frequency are used to evaluate system performance (Haider & Shahrin, 2021; Zulgarnain
& Subrato, 2021). Manufacturing robustness emerges from the interaction of these coordination
mechanisms rather than from isolated system components. Blockchain-orchestrated cyber-physical
supply chain networks therefore represent measurable coordination systems whose performance can
be rigorously assessed using quantitative methods grounded in system modeling and statistical
analysis (Islam et al., 2021; Uddin et al., 2022; Akbar & Sharmin, 2022).

The primary objective of this quantitative study is to formally examine how blockchain orchestration
combined with Byzantine fault tolerance shapes measurable robustness outcomes in cyber-physical
supply chain networks operating within manufacturing environments. This objective is pursued
through a set of operationally defined and statistically testable aims that translate the study’s central
constructs into quantifiable system properties. A first objective is to measure the relationship between
Byzantine fault tolerance configuration parameters and network-level reliability indicators, including
consensus correctness rate, transaction finality stability, and tolerance thresholds under node faults or
adversarial behaviors. A second objective is to quantify the performance cost associated with Byzantine
fault-tolerant consensus within manufacturing-grade cyber-physical data flows by estimating changes
in transaction latency, message overhead, throughput variance, and synchronization delay under
different network sizes and data generation rates. A third objective is to evaluate the effect of
blockchain-based orchestration on data integrity and traceability in cyber-physical supply chain
processes by assessing measurable changes in reconciliation frequency, inconsistency detection rate,
and auditability indicators across multi-actor workflows. A fourth objective is to model robustness as
a dependent performance construct and empirically test how variations in orchestration and fault-
tolerance design influence manufacturing outcomes such as downtime probability, schedule deviation,
disruption propagation magnitude, and recovery time distribution. A fifth objective is to construct and
validate a quantitative system model that integrates cyber-physical event streams with blockchain
consensus dynamics in order to estimate coordination stability under operational variability, including
demand shocks, sensor errors, communication interruptions, and delayed confirmations. A sixth
objective is to compare robustness and coordination metrics across alternative architectural scenarios,
including centralized coordination, non-BFT blockchain coordination, and BFT-enabled blockchain
orchestration, using consistent experimental conditions and standardized performance measures.
Collectively, these objectives are designed to produce a coherent quantitative assessment of how trust,
consensus, and cyber-physical data integrity interact as measurable mechanisms of manufacturing
robustness within distributed supply chain networks.
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LITERATURE REVIEW

The literature review section synthesizes quantitative and empirically measurable research streams that
collectively define blockchain-orchestrated cyber-physical supply chain networks and the role of
Byzantine fault tolerance in manufacturing robustness. This section is structured to align directly with
a quantitative research design by prioritizing constructs that can be operationalized, measured, and
statistically analyzed, including consensus performance (latency, throughput, finality), fault tolerance
thresholds, data integrity rates, synchronization accuracy, disruption propagation indices, and
robustness outcomes such as downtime probability and recovery-time distributions. The review
organizes prior work into tightly scoped themes that move from foundational technologies to system-
level manufacturing performance, emphasizing definitional clarity, model structures, variable
specification, and measurement methods used in peer-reviewed studies. It distinguishes between
blockchain as a distributed coordination layer and cyber-physical systems as real-time data-generating
and control architectures, then positions Byzantine fault tolerance as a reliability mechanism that can
be parameterized and tested under varying network and disturbance conditions. The section also
integrates quantitative supply chain literature on robustness and resilience to clarify how
manufacturing outcomes are represented in statistical models, simulation experiments, and network
metrics. The goal of this review is to provide a defensible theoretical and empirical base for constructing
testable hypotheses, selecting measurement indicators, specifying model variables, and justifying the
quantitative methodology used in the study.

Blockchain-Orchestrated Cyber-Physical Supply Chain Networks

Blockchain orchestration in cyber-physical supply chain networks is operationally defined in the
literature as a distributed coordination mechanism that governs how transactions, events, and process
states are validated, recorded, and synchronized across multiple autonomous actors. Unlike centralized
coordination systems, blockchain orchestration does not function as a single control authority but
rather as a shared protocol layer that standardizes interaction rules among participants (Shao et al.,
2021). Quantitative studies conceptualize blockchain orchestration as an independent coordination
variable whose influence can be measured through indicators such as transaction confirmation
consistency, cross-organization synchronization stability, and coordination delay variance (Foysal &
Subrato, 2022; Rahman, 2022). Within manufacturing supply chains, orchestration captures the degree
to which operational decisions are aligned through shared ledger states rather than bilateral data
exchanges. This alignment is particularly relevant in cyber-physical environments where sensor-
generated events trigger downstream decisions related to production scheduling, logistics execution,
and inventory control (Habibullah & Mohiul, 2023; Zulgarnain, 2022). The literature consistently treats
orchestration as a structural attribute of system architecture rather than as a technological artifact,
emphasizing its role in shaping interaction patterns, trust distribution, and information symmetry
(Hasan & Waladur, 2023; Rabiul & Mushfequr, 2023; Wang et al., 2020). Empirical and simulation-based
research operationalizes blockchain orchestration by distinguishing between manual coordination,
platform-mediated coordination, and protocol-driven coordination. In this framing, orchestration
strength reflects the extent to which process coordination is automated, verifiable, and resistant to
unilateral manipulation (Shahrin & Samia, 2023; Rakibul & Alam, 2023). Quantitative modeling further
positions orchestration as a system-level variable that mediates relationships between cyber-physical
data integrity and manufacturing performance outcomes. As a result, blockchain orchestration is
analytically defined as a measurable coordination construct that influences how distributed
manufacturing networks behave under operational complexity and uncertainty (Kozhaya et al., 2021;
Rifat & Rebeka, 2023).

Ledger integrity is a central construct in blockchain-based supply chain research and is quantitatively
defined as the degree to which recorded data remains consistent, unaltered, and verifiable across all
participating nodes (Kumar, 2023; Saikat & Aditya, 2023). The literature identifies consistency rate as a
primary integrity indicator, reflecting the proportion of nodes that maintain identical ledger states over
time. High consistency rates indicate effective consensus and reliable synchronization, which are
essential for coordinated decision-making in manufacturing systems (Pajooh et al., 2021; Zulgarnain &
Subrato, 2023). Immutability is operationalized through proxy measures that assess resistance to record
modification after confirmation, often evaluated by analyzing rollback frequency, fork occurrence, or
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unauthorized alteration attempts. Tamper-evidence metrics further quantify integrity by measuring
how quickly and reliably deviations from expected ledger states are detected and flagged. In cyber-
physical supply chain contexts, these integrity indicators are directly linked to the trustworthiness of
sensor data, production records, and logistics transactions. Quantitative studies emphasize that ledger
integrity is not binary but exists along a spectrum influenced by network size, consensus design, and
fault tolerance configuration. Measurement frameworks frequently aggregate multiple integrity
indicators to produce composite indices that reflect overall system trustworthiness (Wang et al., 2021).
These indices are then statistically associated with operational outcomes such as audit accuracy,
dispute resolution efficiency, and coordination reliability. The literature therefore treats ledger integrity
as a measurable latent construct composed of observable indicators that collectively capture the
reliability of blockchain-orchestrated data environments in manufacturing supply chains.

Figure 3: Blockchain Orchestration Measurement Framework
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Cyber-physical event streams represent the continuous flow of data generated by sensors, controllers,
and embedded systems across manufacturing and logistics operations. Quantitative research defines
these streams in terms of their temporal structure, data quality, and system responsiveness. Sampling
frequency is used to capture how often physical states are measured and reported, influencing system
visibility and control precision. Timestamp precision reflects the accuracy with which events are
temporally ordered, which is critical for synchronization across distributed processes (Wu et al., 2020).
Data fidelity indicators assess the extent to which recorded events accurately represent physical reality,
incorporating dimensions such as completeness, noise level, and signal consistency. In blockchain-
orchestrated environments, cyber-physical event streams are transformed into ledger transactions,
making their quantitative properties central to system performance. The literature highlights that
variability in event stream quality can propagate through coordination mechanisms and affect
downstream decision accuracy. Measurement approaches often involve statistical characterization of
event delay distributions, missing data rates, and out-of-order arrivals. These metrics are used to
evaluate the suitability of cyber-physical data for real-time manufacturing coordination (Abbas et al.,
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2020). By treating event streams as quantifiable inputs rather than raw signals, prior studies establish a
structured basis for analyzing how digital representations of physical processes interact with
blockchain-based coordination infrastructures. Cyber-physical event quantification therefore functions
as a foundational step in operationalizing system-level constructs in distributed manufacturing
research.

Supply chain networks are frequently modeled in the literature as graph structures composed of nodes
representing organizations or facilities and edges representing material, information, or financial flows.
Quantitative topology analysis uses graph-based metrics to capture structural properties that influence
coordination, robustness, and disruption propagation. Degree metrics measure the number of
connections associated with each node, providing insight into dependency concentration and
coordination complexity (Abbas et al., 2020). Centrality indicators assess the relative importance of
nodes within the network, reflecting control leverage, information brokerage, or vulnerability
significance. Path length metrics quantify the average number of steps required for information or
materials to traverse the network, influencing latency and synchronization challenges. In blockchain-
orchestrated cyber-physical supply chains, these topological characteristics interact with consensus
mechanisms and data dissemination processes. The literature emphasizes that network structure affects
how quickly ledger updates propagate and how faults impact overall system behavior. Quantitative
studies often integrate topology metrics with performance indicators to assess coordination efficiency
and robustness. By mapping supply chain networks into measurable graph attributes, researchers
establish a formal link between structural design and operational outcomes (Melo et al., 2019). This
approach enables comparative analysis across alternative network configurations and supports
statistically grounded evaluation of distributed coordination architectures. As a result, topological
mapping is treated as a core component of construct operationalization in quantitative supply chain
and manufacturing systems research.

Performance in Manufacturing Blockchains

Quantitative consensus performance in manufacturing blockchains is commonly anchored in
transaction throughput, which is treated as the measurable capacity of a distributed ledger to ingest,
validate, and commit operational events generated by industrial processes. In cyber-physical
manufacturing environments, data loads are shaped by heterogeneous event sources such as machine
sensors, quality inspection stations, warehouse scanners, and logistics tracking systems, each
producing transactions at different rates and with different priority levels (Casadei et al., 2020). The
literature frames throughput as a key dependent performance metric because it directly determines
whether a blockchain network can keep pace with real-time operational activity. Empirical studies and
simulation-based investigations model industrial throughput demand using variable event rates that
reflect peak production cycles, batch manufacturing patterns, and intermittent bursts caused by
exception handling and rework loops. Researchers frequently distinguish between nominal throughput
observed under stable loads and effective throughput under realistic contention, where competing
participants submit transactions concurrently (Jamil et al., 2021). Quantitative evaluations also consider
how transaction size, endorsement complexity, and validation workload affect throughput stability. In
manufacturing contexts, throughput is further interpreted as a coordination constraint, since
insufficient throughput leads to backlog accumulation, delayed state synchronization, and increased
divergence between physical reality and the digital ledger representation. The literature therefore treats
throughput not as an isolated technical indicator but as a measurable determinant of system-level
coordination quality. Studies in industrial blockchain benchmarking commonly report throughput
using standardized test conditions, varying network size, transaction complexity, and data arrival rates
to estimate scalability. This body of work positions throughput modeling as a foundational element for
assessing whether consensus systems support manufacturing-grade cyber-physical event streams
(Taylor et al., 2020).

Consensus latency is a central quantitative construct in evaluating manufacturing blockchains, as it
captures the time elapsed between event generation and ledger confirmation that the network treats as
authoritative. The literature decomposes latency into operationally meaningful components to support
measurement precision and comparative evaluation across systems. Propagation delay represents the
time required for a transaction or block proposal to disseminate across nodes, which is influenced by
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network topology, bandwidth, and geographic distribution of participants (Indumathi et al., 2020).
Validation delay reflects the time consumed by verification tasks such as signature checks,
endorsement policy evaluation, transaction ordering, and conflict detection, which vary depending on
workload complexity and computational resources. Finality delay describes the time until a committed
state is considered stable and irreversible under the protocol’s settlement rules, a property that is
especially important for manufacturing execution decisions that depend on confirmed data.
Quantitative research highlights that these latency components behave differently under industrial
workloads, where event arrival rates fluctuate and where system performance must remain stable
under concurrent submissions (Alfandi et al., 2021). Studies measure latency not only through averages
but also through distributional properties such as variability, skewness, and extreme values that
influence operational risk. In manufacturing settings, latency is treated as a coordination limiter
because production and logistics decisions often operate within strict timing windows. When
confirmation delays increase, the cyber representation of the supply chain lags behind physical
processes, reducing synchronization accuracy across organizations. The literature therefore uses
latency decomposition to identify bottlenecks, evaluate protocol suitability, and support statistical
testing of performance differences between consensus designs. This decomposition approach
strengthens quantitative modeling by enabling researchers to link specific latency drivers to
measurable manufacturing coordination outcomes (Liu et al., 2020).

Figure 4: Manufacturing Blockhain Performance Analysis Framework
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Finality is treated in quantitative blockchain research as a measurable property describing how reliably
and how quickly a transaction becomes an irreversible part of the ledger’s authoritative state. In
manufacturing contexts, finality is essential because blockchain-confirmed events often represent
quality approvals, inventory movements, machine status changes, and compliance-critical records that
must be trusted for coordination across multiple actors (Zhou et al., 2020). The literature emphasizes
that finality should be characterized statistically rather than reported as a single nominal value.
Variance in finality time is used as a key indicator of predictability, capturing the stability of
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confirmation under varying workloads and network conditions. Tail risk is used to represent the
probability of extreme delays, where a small portion of events experiences significantly longer
confirmation times than the typical case. Such tail behavior is analytically important in industrial
environments because even infrequent confirmation delays can disrupt scheduling, increase buffer
requirements, and reduce responsiveness in control-dependent workflows. Quantitative studies
commonly estimate confidence around finality measures by reporting uncertainty ranges, repeated
trial statistics, or distribution-based summaries that allow comparison across experimental settings (Xie
et al.,, 2019). Researchers also examine how factors such as node count, adversarial behavior
assumptions, geographic dispersion, and transaction contention influence finality distributions. In
manufacturing blockchains, finality is interpreted as a risk-sensitive coordination metric, meaning that
not only average confirmation speed matters, but also the reliability of confirmation within operational
deadlines. This literature stream frames statistical finality characterization as a core requirement for
evaluating protocol suitability in cyber-physical manufacturing networks where timing consistency
affects coordination stability and robustness measurement (Falazi et al., 2019).

Byzantine Fault Tolerance

Byzantine fault tolerance is treated in quantitative distributed-systems and industrial blockchain
research as a reliability mechanism whose behavior can be parameterized and evaluated under
adversarial participation. In manufacturing-oriented permissioned blockchains, BFT is operationalized
through a fault threshold parameter that defines how many participating nodes can behave arbitrarily
while the system still reaches correct and consistent agreement on ledger state (Tahir et al., 2020). This
parameter is not merely a security descriptor; it functions as a measurable reliability setting that
influences correctness outcomes under compromised participants, misconfigured nodes, and
inconsistent communication behavior. Quantitative studies conceptualize correctness as the probability
that all non-faulty nodes converge on the same valid transaction order and committed state under
specified threat conditions. In cyber-physical supply chain networks, adversarial participation can
represent malicious insiders, compromised edge gateways, or corrupted validators that inject
inconsistent operational records (Srinivas & Das, 2020). Researchers therefore treat correctness as a
system-level outcome linked to measurable conditions such as the proportion of adversarial nodes, the
rate of adversarial messages, and the structure of communication among participants. Studies model
these conditions using scenario-driven parameter sets that reflect realistic manufacturing consortium
settings, where participants may include multiple firms with varying trust relationships and
governance rules. The literature positions BFT threshold tuning as a core design variable because it
balances reliability assurance against operational performance demands. When the threshold is too low
for the threat profile, correctness outcomes degrade under fault conditions and consensus results
become unreliable. When the threshold is configured conservatively, overhead increases and
confirmation dynamics slow, affecting manufacturing coordination timing (Alkhazaali & Oguz, 2020).
This body of work treats BFT parameterization as a quantitative reliability design choice that can be
tested empirically through controlled experiments and statistically summarized through correctness
outcomes across repeated trials.

Message complexity and communication overhead are consistently identified in the literature as
primary predictors of performance degradation in Byzantine fault-tolerant blockchain systems. In
quantitative evaluations, message complexity refers to the volume and pattern of inter-node
communications required to validate transactions, confirm ordering, and establish agreement on ledger
state (Wang et al.,, 2021). Communication overhead captures measurable resource consumption
associated with these messages, including bandwidth usage, network congestion effects, serialization
costs, and processing time devoted to message verification and retransmission. Manufacturing
blockchains operating in cyber-physical supply chains face unique constraints because event streams
can be high frequency and geographically distributed, meaning that communication cost directly
affects transaction confirmation timeliness. Quantitative studies demonstrate that as the number of
participating nodes increases, communication requirements expand rapidly, leading to measurable
reductions in throughput and increases in latency variance. This behavior is particularly relevant when
blockchain orchestration is used for multi-tier supply chain coordination, where validation traffic can
compete with operational network traffic used for industrial control, telemetry, and logistics systems.
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Researchers frequently treat communication overhead as an independent predictor variable for
performance outcomes such as confirmation delay, deadline miss ratio, and synchronization drift
between physical and ledger-confirmed states (Nikoli¢ et al., 2021). Empirical investigations also
consider how network topology, geographic dispersion, and asymmetric link quality amplify overhead
effects in consortium manufacturing settings. In addition, studies explore how batching strategies,
message aggregation, and hierarchical communication structures alter overhead patterns under
identical industrial workloads. The literature therefore positions message complexity and
communication overhead as central measurable mechanisms that mediate the relationship between
BFT reliability guarantees and operational feasibility in manufacturing-grade cyber-physical supply
chain networks (Chen et al., 2020).

Figure 5: Byzantine Fault Tolerance Reliability Framework
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Quantitative research on BFT-enabled systems relies on explicit attack and fault models to represent
adversarial and failure behaviors in measurable terms. In manufacturing supply chain networks,
threats are not framed abstractly; they are translated into operationally meaningful parameters such as
node compromise rate, data forgery rate, and network partition probability. Node compromise rate
represents the proportion of consensus participants that may behave maliciously or unpredictably due
to cyber intrusion, insider manipulation, or misconfiguration (Jiang et al., 2020). Data forgery rate
represents the frequency with which falsified operational events are introduced, such as incorrect
production confirmations, fabricated logistics scans, or manipulated quality records. Network partition
probability captures the likelihood that the communication graph splits into disconnected segments,
often driven by infrastructure failure, routing instability, or targeted denial conditions. These
parameters allow studies to construct controlled scenarios that reflect realistic cyber-physical
environments, where edge devices and gateways may operate under varying security postures and
connectivity quality. The literature treats these models as necessary because BFT correctness guarantees
are condition-dependent, meaning that reliability outcomes vary with the intensity and structure of
faults (Zhao et al., 2021). Quantitative studies often implement these fault models through controlled
message corruption, validator misbehavior scripts, selective transaction omission, and simulated
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network delay or packet loss. Results are analyzed using measurable outcomes such as divergence rate
between node ledger states, inconsistency detection frequency, confirmation delay inflation, and
transaction rejection patterns. In manufacturing contexts, these outcomes are further interpreted
through operational consequences, including delayed scheduling updates, inaccurate inventory
synchronization, and increased reconciliation workload. This body of work establishes that well-
specified quantitative fault models form the basis for statistically valid assessment of BFT reliability in
blockchain-orchestrated cyber-physical supply chain networks (Rahman et al., 2020).

Reliability evaluation of Byzantine fault-tolerant consensus in manufacturing blockchains is structured
around measurable metrics that capture whether the system remains correct, responsive, and
operational when faults occur. Consensus safety rate represents the proportion of trials in which the
network avoids committing conflicting or invalid ledger states, reflecting the system’s ability to
preserve correctness under adversarial or faulty behavior (Ziller et al., 2021). Liveness rate represents
the proportion of trials in which the system continues to make progress by committing valid
transactions within acceptable timing boundaries, reflecting responsiveness under stress. System
availability under fault injection represents the fraction of operational time during which the network
remains able to accept and finalize transactions, capturing practical continuity for manufacturing
coordination. In cyber-physical supply chain networks, these reliability metrics connect directly to
operational feasibility because production and logistics systems require both correctness and timely
confirmation of events. Quantitative studies implement fault injection to test these metrics under
controlled conditions, varying the proportion of faulty nodes, the intensity of message corruption, and
the severity of network impairment (Fu et al., 2020). Reliability outcomes are statistically summarized
through rates, distributions, and variability measures that allow comparison across consensus designs
and configuration settings. Researchers frequently interpret changes in safety, liveness, and availability
as indicators of robustness potential, since unstable consensus behavior can propagate uncertainty
across distributed manufacturing actors. These metrics are also evaluated in relation to workload
intensity, highlighting that reliability and performance interact under industrial data loads. The
literature therefore treats safety, liveness, and availability as core quantitative reliability constructs that
define how well BFT mechanisms support dependable coordination in blockchain-orchestrated
manufacturing supply chains (Yu et al., 2021).

Cyber-Physical Supply Chain Analytics

Sensor error is a fundamental analytical concern in cyber-physical supply chain networks because
sensor-generated data directly feeds blockchain-ledger records that guide manufacturing and logistics
decisions. Quantitative literature treats sensor error not as isolated anomalies but as statistically
distributed phenomena influenced by hardware degradation, environmental conditions, calibration
drift, communication noise, and intermittent power instability (Rejeb et al., 2021). Error distributions
are commonly characterized using frequency, magnitude, and persistence dimensions, allowing
researchers to examine how inaccuracies propagate from physical measurements into digital records.
In blockchain-orchestrated environments, sensor errors are particularly consequential because
erroneous events, once validated and recorded, become part of an immutable ledger state shared across
organizations. Ledger validity is therefore operationally linked to the quality of upstream sensor data
rather than solely to consensus correctness. Studies emphasize that even small but systematic sensor
deviations can accumulate into significant discrepancies when aggregated across high-frequency event
streams. Quantitative analyses often assess how different error profiles affect transaction rejection rates,
inconsistency detection frequency, and post-hoc reconciliation workload (Ciatto et al., 2020). In
manufacturing supply chains, sensor error impacts include misreported production completion,
incorrect inventory counts, inaccurate condition monitoring, and false logistics confirmations. These
effects are amplified when data feeds automated coordination processes such as replenishment triggers
or quality release workflows. The literature frames ledger validity as a dependent construct that reflects
the interaction between sensor reliability, validation logic, and consensus acceptance rules. As a result,
sensor error distributions are treated as measurable input variables that influence the probability that
ledger records accurately represent physical reality. This framing establishes sensor integrity as a
prerequisite for meaningful blockchain-based coordination in cyber-physical supply chain analytics
(Stanciu, 2017).
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Data quality measurement is a core analytical theme in cyber-physical supply chain research because
operational decisions depend on the reliability of digital representations of physical processes.
Quantitative studies consistently decompose data quality into measurable dimensions, including
completeness, accuracy, timeliness, and consistency. Completeness reflects the proportion of expected
events that are successfully captured and recorded, accounting for data loss caused by sensor outages,
transmission failures, or system bottlenecks (Aranda et al., 2019). Accuracy represents the degree to
which recorded values align with actual physical states, capturing measurement error and distortion
effects. Timeliness measures the delay between physical event occurrence and digital availability for
coordination, which is especially critical in manufacturing environments with tight execution
windows. Consistency assesses whether identical events are represented uniformly across system
components and organizational boundaries.

Figure 6: Cyber-Physical Supply Chain Analytics Framework
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In blockchain-orchestrated supply chains, these dimensions are evaluated not only at the point of data
generation but also after ledger confirmation, making them end-to-end integrity indicators.
Quantitative frameworks often aggregate these dimensions into composite indices that summarize
overall data quality performance. Empirical studies link variations in data quality metrics to
coordination inefficiencies, reconciliation frequency, and increased operational risk (Aranda et al.,
2019). In manufacturing contexts, poor data quality manifests as schedule deviations, inventory
imbalance, quality misclassification, and delayed response to disruptions. The literature treats data
quality as a continuous variable rather than a binary attribute, enabling statistical analysis of how
incremental degradation affects system performance. This analytical approach positions data quality
measurement as a foundational component of cyber-physical supply chain analytics and as a critical
mediator between sensor reliability and blockchain ledger trustworthiness (Pavlidis et al., 2020).

Cross-organization data synchronization is a defining challenge in distributed supply chain networks
where multiple firms rely on shared digital records to coordinate physical activities. Quantitative
research frames synchronization as the alighment of event representations across organizational
systems and ledger nodes over time. Drift is used as a primary metric to capture gradual divergence
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between locally perceived states and the globally accepted ledger state, often caused by confirmation
delays or asynchronous data submission (Swan, 2016). Duplicate event rates quantify the frequency
with which identical physical events are recorded multiple times due to redundant sensing,
overlapping system boundaries, or retry mechanisms. Out-of-order arrival metrics measure the extent
to which events are received and confirmed in sequences that differ from their actual occurrence order,
which can distort process interpretation and coordination logic. In blockchain-orchestrated cyber-
physical supply chains, these synchronization issues are analytically significant because ledger
consensus enforces a single authoritative order that may lag behind physical reality. Quantitative
studies examine how synchronization errors affect downstream processes such as inventory
reconciliation, shipment matching, and compliance verification. Metrics are often collected through log
analysis, event correlation techniques, and temporal alighment assessments across organizational
systems. The literature emphasizes that synchronization quality is influenced by network latency,
transaction throughput limits, and organizational data governance practices (Guo et al., 2021). By
operationalizing synchronization through measurable indicators, researchers establish a structured
basis for evaluating the effectiveness of blockchain coordination in maintaining coherent system-wide
views of distributed manufacturing and logistics operations.

Traceability is a central analytical construct in cyber-physical supply chain systems and is
quantitatively defined by the system’s ability to reconstruct the history, transformation, and movement
of products and information across the network. Event lineage depth measures how many process
stages or organizational handoffs can be reliably linked through recorded events, reflecting the
granularity of traceability coverage (Carminati et al., 2018). Trace resolution time quantifies the
duration required to retrieve and assemble relevant records during investigation, auditing, or
exception handling. Audit coverage ratio represents the proportion of operational activities that are
supported by verifiable digital records within the ledger. In blockchain-enabled environments,
traceability metrics are directly tied to ledger completeness, data consistency, and confirmation
stability. Quantitative studies demonstrate that higher traceability resolution correlates with reduced
investigation effort, improved compliance verification, and faster anomaly detection. In manufacturing
supply chains, traceability supports quality assurance, recall management, and regulatory reporting,
making its measurement operationally significant. Researchers often evaluate traceability performance
using simulated recall scenarios, audit exercises, and controlled data omission tests to assess system
responsiveness and coverage (Ceccarelli et al., 2020). The literature treats traceability not as an abstract
benefit but as a measurable system capability with definable performance thresholds. By quantifying
lineage depth, resolution efficiency, and coverage extent, prior studies establish traceability as a core
outcome variable in cyber-physical supply chain analytics and a key indicator of blockchain-
orchestrated data integrity.

Manufacturing Robustness as a Dependent Variable

Manufacturing robustness is widely treated in the literature as a dependent system-level performance
construct that reflects the ability of production and supply chain operations to maintain stable output
under variability and disturbance. Quantitative studies consistently operationalize robustness using
metric families that capture different dimensions of operational stability. Downtime probability
represents the likelihood that manufacturing processes experience operational stoppage within a
defined observation window, reflecting vulnerability to equipment failure, coordination breakdown,
or information inconsistency (Swan, 2015). Throughput stability measures the variability of production
output over time, capturing fluctuations relative to planned or nominal capacity. Schedule deviation
quantifies the extent to which actual production and delivery timelines diverge from predefined
schedules, serving as an indicator of coordination effectiveness across cyber-physical and
organizational layers. These metrics are treated as complementary rather than interchangeable, as each
captures a distinct aspect of robustness behavior. In blockchain-orchestrated cyber-physical supply
chains, robustness metrics are evaluated in relation to data integrity, consensus performance, and
synchronization quality. Quantitative studies frequently analyze robustness using time-series data,
event logs, and simulation outputs to assess how disturbances propagate into measurable performance
degradation. The literature emphasizes that robustness should be assessed under realistic operating
conditions that include demand variability, processing delays, and information latency. By grouping
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downtime probability, throughput stability, and schedule deviation into a structured metric family,
researchers establish a consistent analytical framework for comparing robustness across alternative
system architectures and coordination mechanisms (Rathina et al., 2019). This framing positions
robustness as a multidimensional outcome that can be statistically analyzed and linked to upstream
coordination and reliability variables.

Recovery performance is a central dimension of manufacturing robustness and is quantitatively
evaluated through the distribution of time required for a system to return to stable operation following
a disturbance. Rather than relying on single-point estimates, the literature emphasizes modeling
recovery time as a distribution to capture variability across disruption scenarios and system states.
Mean recovery time is commonly used as a summary indicator representing the average duration of
performance degradation, while distributional spread reflects uncertainty and inconsistency in
recovery behavior. Hazard-rate approaches are applied to examine the likelihood that recovery occurs
at different time intervals, providing insight into whether recovery accelerates or slows as disruption
persists (Arjomandi-Nezhad et al., 2020).

Figure 7: Manufacturing Robustness Metrics Framework
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In cyber-physical supply chain contexts, recovery time is influenced by factors such as data
synchronization speed, decision latency, resource flexibility, and coordination reliability. Quantitative
studies analyze recovery distributions using simulation experiments, historical disruption datasets,
and controlled stress scenarios. These analyses reveal that systems with high data integrity and
coordination accuracy exhibit narrower recovery-time distributions, indicating more predictable
performance. Manufacturing robustness research treats recovery modeling as essential because
prolonged or highly variable recovery undermines schedule reliability and increases buffer
requirements. By framing recovery time as a probabilistic outcome rather than a deterministic value,
the literature supports more nuanced evaluation of robustness under uncertainty (Franke et al., 2014).
This approach allows recovery behavior to be compared across system configurations, coordination
mechanisms, and disruption intensities, reinforcing its role as a key dependent variable in
manufacturing robustness analysis.

Disruption propagation is a defining feature of complex manufacturing supply chains and is
quantitatively examined through metrics that capture how localized disturbances spread across
networked operations. The ripple effect magnitude represents the extent to which an initial disruption
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amplifies as it moves through interconnected production stages, suppliers, and logistics channels.
Network shock transmission metrics quantify how quickly and widely performance degradation
travels across nodes and tiers, reflecting structural interdependencies and coordination efficiency
(Faber et al., 2017). In cyber-physical supply chain networks, disruption propagation is influenced by
real-time data availability, synchronization accuracy, and decision response timing. Quantitative
studies use network-based models and simulation experiments to trace how disturbances in one
location affect throughput, inventory levels, and service performance elsewhere in the system. These
models measure propagation intensity using indicators such as cumulative performance loss, duration
of downstream impact, and number of affected nodes. The literature emphasizes that robust
manufacturing systems limit both the magnitude and speed of disruption transmission, preventing
cascading failures. Blockchain-orchestrated coordination is often evaluated by examining whether
shared, verifiable data reduces uncertainty amplification during disruptions (Barabadi & Ayele, 2018).
By operationalizing ripple effects through measurable propagation metrics, researchers establish a
structured method for assessing how coordination architectures influence system-wide stability. This
quantitative framing treats disruption propagation not as an abstract risk but as an observable and
analyzable phenomenon that directly contributes to overall manufacturing robustness.

Models for Supply Chain Resilience

Quantitative network science models represent supply chain systems as graphs in which nodes
correspond to firms, facilities, or cyber-physical assets, and edges represent material, information, or
coordination relationships. Within this framework, robustness is evaluated by analyzing how network
connectivity degrades under node or edge removal. Connectivity loss ratio is a core metric used to
measure the proportion of network connectivity lost when specific components fail or are removed,
providing a direct indicator of structural vulnerability (Tachaudomdach et al., 2021). Critical node
sensitivity captures the extent to which the removal or degradation of highly connected or strategically
positioned nodes disrupts overall network performance. In manufacturing supply chains, such nodes
may represent key suppliers, central distribution hubs, or dominant coordination platforms.
Quantitative studies apply these measures to assess how concentrated dependencies increase
susceptibility to cascading disruptions. In blockchain-orchestrated cyber-physical supply chains,
connectivity loss has both physical and informational dimensions, since node failure may affect
material flow as well as ledger participation (Shen et al., 2019). Network robustness analysis therefore
considers how consensus participation and data dissemination paths overlap with physical supply
routes. Researchers use graph perturbation experiments to simulate targeted attacks, random failures,
and clustered disruptions, observing how connectivity metrics evolve. The literature emphasizes that
robust networks exhibit gradual connectivity degradation rather than abrupt fragmentation, indicating
resilience to localized shocks. By applying graph robustness measures, researchers establish a formal
method for linking structural design to resilience outcomes in distributed manufacturing systems
operating under shared consensus mechanisms (Cats & Jenelius, 2015).

Cascading failure models are widely used in quantitative supply chain research to examine how
localized disruptions propagate through interconnected networks. These models conceptualize
disruptions as probabilistic contagion processes, where failure at one node increases the likelihood of
failure at adjacent nodes through dependency relationships. In manufacturing supply chains, such
cascades may arise from supplier outages, logistics delays, information inconsistencies, or coordination
breakdowns. Probabilistic contagion metrics quantify the likelihood, speed, and extent of disruption
spread across the network (Wang et al., 2019). Quantitative studies analyze cascading behavior by
simulating failure initiation at different nodes and tracking resulting performance degradation over
time. In cyber-physical supply chain networks, cascading failures are influenced by both physical
dependencies and digital coordination mechanisms. Blockchain-based consensus affects how quickly
disruption information is shared and how uniformly system state changes are recognized across
participants. Researchers examine whether shared ledger confirmation dampens uncertainty or
introduces delay that alters contagion dynamics. Metrics such as cascade size, propagation depth, and
time to stabilization are used to compare resilience across network configurations. The literature
highlights that resilient networks limit contagion by isolating disturbances and preventing overload
transfer to adjacent nodes (Stochino et al., 2019). By framing cascading failures probabilistically,
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network science models provide a quantitative lens for evaluating how distributed consensus
architectures interact with structural dependencies to shape manufacturing resilience.

Redundancy and flexibility are treated in network science literature as structural properties that
enhance resilience by providing alternative options for material flow and coordination. Alternative
path ratio measures the availability of multiple distinct routes between nodes, reflecting the network’s
capacity to reroute flows when primary connections are disrupted. Supplier substitutability indices
quantify the extent to which demand at one node can be met by alternative suppliers without
significant performance degradation. In manufacturing supply chains, these metrics capture both
physical redundancy and coordination adaptability (Revilla et al., 2019).

Figure 8: Supply Chain Network Robustness Metrics
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Quantitative studies emphasize that redundancy must be evaluated in relation to dependency strength,
capacity constraints, and coordination delay. In blockchain-orchestrated environments, redundancy
also applies to consensus participation, where multiple validators or data sources can compensate for
faulty or unavailable nodes. Researchers assess how redundant paths influence synchronization speed
and ledger confirmation stability under stress conditions. Flexibility metrics are often derived from
network topology analysis combined with operational constraints, enabling evaluation of how quickly
systems adapt to disruption. The literature shows that networks with higher redundancy and
substitutability exhibit lower disruption amplification and faster recovery (Patriarca et al., 2021). By
quantifying redundancy and flexibility through structured network metrics, researchers establish
measurable links between supply chain design and resilience outcomes under distributed coordination
regimes.

Trade-Off Modeling

Quantitative trade-off modeling in manufacturing blockchains begins with the estimation of security
cost functions that capture how enhanced protection mechanisms affect operational performance.
Security overhead is not treated as an abstract penalty but as a measurable set of performance
degradations associated with cryptographic processing, consensus coordination, and fault-tolerance
enforcement (Solinen et al.,, 2017). Latency penalty represents the additional delay introduced by
validation steps, message exchanges, and confirmation protocols required to secure distributed
agreement. Throughput reduction captures the decrease in effective transaction processing capacity as
security-related computation and communication consume system resources. Resource consumption
reflects the measurable use of processing power, memory, network bandwidth, and energy associated
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with maintaining secure consensus participation. In cyber-physical manufacturing environments, these
costs directly influence the timeliness and reliability of operational data used for production
scheduling, quality control, and logistics coordination. Quantitative studies estimate security cost
functions by comparing baseline system performance under minimal protection to performance under
progressively stronger security configurations. These comparisons are conducted using controlled
workloads that reflect industrial data generation patterns and coordination requirements. The
literature emphasizes that security costs scale nonlinearly with network size, transaction complexity,
and fault tolerance settings (Paul & Venkateswaran, 2020). As a result, security overhead is modeled as
a continuous performance constraint rather than a fixed system attribute. This framing enables
statistical analysis of how incremental increases in security strength translate into measurable impacts
on manufacturing coordination efficiency and responsiveness.

Figure 9: Security-Performance Trade-Off Modeling Framework
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Multi-objective optimization models are widely used in the literature to analyze trade-offs between
security assurance and manufacturing performance in distributed consensus systems. These models
treat consensus configuration and fault threshold settings as decision variables that simultaneously
influence reliability outcomes and operational efficiency. In manufacturing blockchains, higher fault
tolerance thresholds increase resistance to adversarial behavior and system inconsistency but also
intensify communication overhead and confirmation delay (Barzegkar-Ntovom et al., 2020).
Quantitative optimization approaches evaluate these competing effects by defining performance
objectives related to throughput stability, latency adherence, and reliability metrics such as safety and
liveness rates. Rather than seeking a single optimal configuration, researchers identify sets of feasible
solutions that represent balanced trade-offs between security robustness and manufacturing
responsiveness. These solution sets allow decision-makers to evaluate how different configurations
align with operational priorities and system constraints. Optimization studies frequently incorporate
workload variability, network size, and fault intensity parameters to reflect realistic cyber-physical
environments. By framing consensus selection as a multi-criteria decision problem, the literature moves
beyond binary comparisons toward structured evaluation of configuration alternatives (Montazeri et
al., 2021). This approach enables systematic assessment of how incremental changes in consensus
design influence multiple performance dimensions simultaneously. Multi-objective optimization
therefore provides a quantitative framework for selecting blockchain configurations that maintain
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acceptable manufacturing performance while meeting predefined security and reliability requirements.
Sensitivity analysis is a core methodological tool in quantitative trade-off modeling, used to assess how
variations in system parameters affect performance and robustness outcomes. In the context of
manufacturing blockchains, sensitivity frameworks examine how changes in consensus settings, fault
thresholds, network size, and workload intensity influence key performance indicators. Parameter
elasticity measures the degree to which small changes in a parameter produce proportional changes in
outcomes such as latency, throughput, or downtime probability (Joao et al., 2018). Robustness surfaces
are constructed to visualize performance stability across ranges of parameter values, revealing regions
where system behavior remains stable and regions where it degrades rapidly. Quantitative studies use
sensitivity analysis to identify critical parameters that disproportionately influence manufacturing
performance under distributed consensus. These analyses are often conducted through repeated
simulation experiments or controlled stress tests that vary one or more parameters while holding others
constant. The literature emphasizes that sensitivity results support informed system design by
highlighting where performance margins are narrow and where configuration flexibility exists
(Ponnambalam et al., 2014). In cyber-physical supply chain contexts, sensitivity analysis also helps
assess how external variability, such as demand fluctuation or communication instability, interacts with
security configurations. By systematically mapping parameter impact, sensitivity frameworks provide
empirical grounding for understanding trade-offs between security overhead and manufacturing
robustness.

Statistical comparison of alternative coordination architectures is a central approach used to evaluate
trade-offs between security mechanisms and manufacturing performance. The literature commonly
contrasts centralized coordination systems, non-fault-tolerant blockchain architectures, and Byzantine
fault-tolerant blockchain systems under equivalent operational conditions. Centralized architectures
typically exhibit low coordination latency and high throughput but concentrate risk and reduce fault
resilience. Non-BFT blockchain systems distribute coordination but offer limited protection against
adversarial behavior or inconsistent participation (Bow & Zaiotti, 2020). BFT-enabled architectures
introduce stronger reliability guarantees at the cost of increased coordination overhead. Quantitative
comparison frameworks assess these architectures using standardized metrics such as transaction
delay distributions, throughput variance, deadline adherence rates, and availability under fault
conditions. Statistical methods are applied to evaluate whether observed performance differences are
systematic and meaningful rather than incidental. Comparative studies often include repeated trials,
controlled workloads, and consistent network configurations to ensure validity. Results are interpreted
in terms of trade-off profiles rather than absolute superiority, highlighting how each architecture
performs across different dimensions of manufacturing coordination (Leuprecht et al.,, 2021). This
literature stream establishes that security-performance trade-offs are architecture dependent and must
be evaluated using rigorous quantitative comparison rather than qualitative assessment. Such
comparisons provide a structured basis for understanding how coordination design choices shape
manufacturing system behavior under distributed consensus.

Used in Prior Quantitative Studies

Quantitative studies examining blockchain-orchestrated cyber-physical supply chain systems rely on
diverse dataset types to capture operational complexity and coordination dynamics. Synthetic event
streams are widely used to simulate high-frequency manufacturing data under controlled conditions,
allowing researchers to vary event rates, transaction sizes, fault intensity, and network participation
levels systematically (Trein et al., 2019). These datasets provide experimental flexibility and
repeatability, enabling rigorous performance benchmarking across alternative consensus and
coordination configurations. Testbed manufacturing data represents another important dataset
category, typically generated from laboratory-scale production systems, pilot factories, or controlled
industrial environments equipped with sensors and automation platforms. Such data captures realistic
timing patterns, machine behavior, and process variability while maintaining experimental control.
Multi-partner transaction logs are used to represent coordination across organizational boundaries,
capturing event submissions, ledger confirmations, and reconciliation activity among multiple
stakeholders. These logs reflect the distributed nature of manufacturing supply chains and support
analysis of synchronization behavior, data consistency, and auditability (Breimo et al., 2017).
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Quantitative studies often combine these dataset types to balance realism and experimental control,
using synthetic streams for stress testing and real-world logs for validation. Dataset selection is treated
as a methodological design choice because data characteristics directly influence performance metrics
such as latency, throughput, and robustness indicators. By explicitly categorizing dataset types, the
literature establishes transparent foundations for empirical evaluation and supports comparability
across studies examining blockchain-based coordination in manufacturing contexts (Yongpeng Wu et
al., 2020).
Figure 10: Quantitative Methodological Framework for Blockchain CPS
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Validation strategies are essential in quantitative research on manufacturing blockchains to ensure that
observed performance patterns are robust, generalizable, and not artifacts of specific datasets or
experimental configurations. Cross-validation is commonly used to partition datasets into multiple
subsets, allowing models to be trained and evaluated across different data segments. This approach
supports assessment of model stability under varying operational conditions. Bootstrapping
techniques are applied to generate repeated samples from observed data, enabling estimation of
variability and confidence around performance metrics such as throughput stability, recovery time,
and synchronization accuracy (Ambrosio, 2017). Out-of-sample robustness testing evaluates whether
models and performance conclusions hold when applied to data generated under different conditions,
such as altered workload intensity, network size, or fault scenarios. In simulation-based studies,
validation often involves comparing model outputs against known baseline behaviors or
independently generated datasets. Quantitative research emphasizes that validation must account for
both statistical reliability and operational plausibility, ensuring that modeled behaviors align with
manufacturing realities. Validation results are typically reported using distributional summaries,
variability measures, and consistency checks across experimental runs. By employing multiple
validation strategies, prior studies strengthen the credibility of conclusions drawn about blockchain
performance and manufacturing robustness (Biondi & Giannoccolo, 2015). This methodological
emphasis supports reproducibility and facilitates comparison across different empirical investigations
within the field.

Simulation approaches form a central methodological pillar in quantitative research on blockchain-
orchestrated cyber-physical supply chains, as they allow exploration of complex system behavior under
controlled yet realistic conditions. Discrete-event simulation is frequently used to model sequences of
manufacturing and logistics events, capturing queuing behavior, resource contention, and timing
dependencies. Agent-based simulation represents supply chain actors, machines, and validators as

53



Journal of Sustainable Development and Policy, September 2023, 34-72

autonomous entities whose interactions generate emergent system behavior (Shokri-Ghadikolaei et al.,
2016). This approach is particularly useful for examining coordination dynamics and disruption
propagation in decentralized environments. Hybrid cyber-physical system models integrate
continuous physical processes with discrete digital events, enabling representation of sensor data
generation, control actions, and ledger confirmation within a unified framework. Quantitative studies
use these simulation approaches to assess performance metrics such as latency distributions,
throughput degradation, recovery dynamics, and synchronization drift. Simulation experiments often
involve repeated runs under varying parameter configurations to generate statistically meaningful
results. The literature emphasizes that simulation fidelity depends on accurately modeling both
physical process constraints and digital coordination mechanisms (Zeitlin & Overdevest, 2021). By
leveraging diverse simulation techniques, researchers capture multi-scale interactions between
physical operations and blockchain consensus, supporting rigorous analysis of manufacturing
robustness and coordination efficiency, without reliance on simplified assumptions.

Method

Research Design

A quantitative, explanatory study design was employed to test how blockchain orchestration and
Byzantine fault tolerance settings were associated with measurable manufacturing robustness in cyber-
physical supply chain networks. The design was implemented as a controlled, scenario-based
experimental study supported by simulation outputs and system log data, allowing performance and
robustness indicators to be observed under standardized operating conditions. The unit of analysis was
defined at the network-run level, where each run represented a complete execution of the cyber-
physical supply chain model under a specified consensus configuration, workload intensity, and fault
condition. The study was structured as a comparative architecture evaluation in which three
coordination regimes were examined under identical disturbance and workload profiles: centralized
coordination, non-BFT blockchain coordination, and BFT-enabled blockchain orchestration.
Experimental conditions were randomized across runs to reduce ordering effects, and multiple
replications were executed for each configuration to stabilize estimates of mean performance and
variability. The observation window for each run was fixed to ensure comparability of throughput,
latency distributions, synchronization drift, and robustness outcomes. Disturbance scenarios included
operational variability, injected node faults, and network impairment patterns consistent with cyber-
physical environments. All outcome measures were computed from time-stamped event traces and
ledger-confirmation logs, enabling distributional analysis rather than reliance on single-point
performance summaries.

Population

The study population was defined as manufacturing cyber-physical supply chain networks that used
distributed coordination mechanisms to record and synchronize operational events across multiple
organizational entities. This population was represented analytically using a networked system model
containing manufacturers, upstream suppliers, logistics partners, and validation nodes responsible for
transaction confirmation. The sampling frame was operationalized as a set of simulated network
instances generated from parameter ranges reflecting typical consortium manufacturing conditions,
including variation in node count, network density, event arrival intensity, and disruption exposure.
Network instances were treated as representative configurations of real manufacturing supply chain
structures rather than as specific firms or industries. Each instance included cyber-physical event
generators representing production and logistics processes and a coordination layer that captured
centralized, non-BFT, or BFT-enabled operation. Runs were drawn from this frame using stratified
scenario selection to ensure coverage across low, medium, and high workload intensities and across
low, moderate, and elevated fault conditions. The effective sample size was defined as the total number
of completed network runs across all configurations and replications, and all runs that failed pre-
defined integrity checks were excluded to prevent invalid or incomplete traces from biasing statistical
estimates.

Variables and Measurement Framework

Blockchain orchestration strength was treated as an independent construct operationalized through the
coordination regime implemented in each run and the degree of protocol-based confirmation required
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for event acceptance. Byzantine fault tolerance configuration was treated as an independent construct
represented by the fault threshold setting and the enabled BFT consensus mode, while fault intensity
was treated as an experimental factor captured through the injected rate of adversarial or faulty
validator behavior and the imposed communication impairment profile. Data integrity quality was
treated as a mediator construct represented by end-to-end sensor-to-ledger accuracy indicators,
including event completeness rate, inconsistency detection frequency, duplicate event rate, and out-of-
order confirmation incidence derived from event logs.

Figure 11: Methodology of This Study

Research Design

(Controlled scenario-based experiment;
Unit: network-run)
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Consensus performance was treated as a process construct represented by transaction throughput,
confirmation latency distributions, finality stability, and deadline adherence rate calculated from
ledger timestamps. Manufacturing robustness was treated as the primary dependent construct
represented by downtime probability, throughput stability over time, schedule deviation magnitude,
and recovery-time distribution summaries computed from production-state trajectories and fulfillment
timelines. Multi-echelon robustness was represented through service level variance and inventory
oscillation indicators calculated across supply chain layers. Control variables were included to isolate
architecture effects and comprised network size, network density, transaction complexity class,
baseline demand variability level, and disruption scenario type. All measures were computed using
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consistent sampling intervals and identical observation windows across runs, and variable extraction
procedures were standardized through a single event-processing pipeline to maintain measurement
comparability.

Analytical Techniques and Statistical Procedures

The statistical plan was executed in sequential stages to support both descriptive characterization and
inferential testing. Data screening was performed first, including checks for missing timestamps,
invalid ordering, and extreme outliers caused by failed runs, followed by transformation of raw logs
into run-level metrics. Distributional properties were then assessed for key performance outcomes
using summary statistics, variance estimates, and tail-behavior indicators to capture non-normal
patterns typical of latency and recovery outcomes. Architecture-level differences across the three
coordination regimes were tested using mean comparison procedures appropriate to distributional
assumptions, with robust alternatives applied when variance heterogeneity or non-normality was
observed. Multi-factor comparisons examining the combined effects of coordination regime, workload
intensity, and fault intensity were estimated using factorial modeling approaches, allowing interaction
effects to be tested for throughput, latency stability, and robustness outcomes. Regression-based
models were then fitted to estimate the association between consensus performance variables and
manufacturing robustness indicators while controlling for network topology and demand variability.
Mediation testing was applied to evaluate whether data integrity metrics accounted for part of the
relationship between coordination regime and robustness outcomes, using resampling-based inference
for indirect effects. For time-dependent outcomes such as recovery trajectories and schedule deviation
evolution, time-series summaries were constructed at the run level and analyzed through repeated-
measures modeling structures that accounted for within-run autocorrelation. Model diagnostics were
conducted to verify residual behavior, multicollinearity risk, and sensitivity to influential observations,
and results were reported using effect-size estimates and uncertainty intervals derived from repeated-
run variability rather than relying on single-run outcomes.

Reliability and Validity

Reliability was established through replication, standardized measurement extraction, and stability
checks across repeated runs for each experimental condition. Metric reliability was evaluated by
computing run-to-run variability under identical parameter settings and verifying that key indicators
such as throughput, confirmation delay, and downtime probability converged toward stable central
tendencies as replications increased. Internal validity was supported by controlled manipulation of
architecture type, workload intensity, and fault conditions while holding observation windows and
network baselines constant, which reduced confounding from uncontrolled operational variation.
Construct validity was addressed by aligning each theoretical construct with multiple observable
indicators, ensuring that blockchain orchestration, data integrity, consensus performance, and
manufacturing robustness were represented through measurable and interpretable metrics. Content
validity was strengthened through the inclusion of both cyber-level performance metrics and
manufacturing-level outcome metrics so that coordination behavior and operational consequences
were jointly evaluated. External validity was supported by modeling multiple network topologies and
scenario intensities, which reduced dependence on a single configuration and allowed findings to be
interpreted across a range of manufacturing-consortium-like conditions. Statistical conclusion validity
was reinforced through assumption checks, use of robust procedures when distributional requirements
were not met, and reporting of uncertainty intervals based on repeated-run distributions, ensuring that
inferences reflected variability inherent in cyber-physical coordination systems.

FINDINGS

Descriptive Analysis

The descriptive analysis summarized network-run outcomes across coordination regimes, workload
intensities, and fault conditions. Overall, transaction throughput and deadline adherence showed clear
separation by architecture type, while confirmation latency and recovery-time behavior displayed
right-skewed distributions with visible tail risk under elevated faults. Centralized coordination
produced the highest throughput and the lowest confirmation latency, whereas BFT-enabled
orchestration showed lower throughput but higher integrity and better robustness stability under fault
injection. Non-BFT blockchain coordination exhibited intermediate throughput and latency but greater
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variability in integrity and synchronization indicators. Robustness outcomes indicated that downtime
probability and schedule deviation increased materially as workload and fault intensity rose, with the
steepest increases observed in non-BFT settings. Data screening removed a small portion of runs due
to incomplete timestamps and invalid ordering, leaving a stable analytic sample for subsequent
correlation and regression testing.

Table 1. Overall Descriptive Statistics Across All Network-Runs (N = 360)

Variable Mean SD Min Max
Transaction throughput (TPS) 742.5 190.8 320.0 1125.0
Confirmation latency (seconds) 2.84 1.46 0.62 8.90
Finality stability (0-1) 0.963 0.031 0.850 0.995
Deadline adherence rate (%) 88.7 8.9 62.0 99.0
Data completeness rate (%) 97.8 2.4 89.5 100.0
Duplicate event rate (%) 1.62 0.88 0.20 4.90
Out-of-order confirmation (%) 2.10 1.25 0.10 6.80
Downtime probability (%) 4.30 2.60 0.60 12.40
Schedule deviation (minutes) 18.6 10.9 2.5 55.0
Recovery time (minutes) 41.2 19.4 12.0 110.0
Service level variance (0-1) 0.072 0.038 0.012 0.190
Inventory oscillation index (0-1) 0.214 0.086 0.060 0.480

Table 1 summarized the full network-run sample and established baseline magnitude and dispersion
for consensus, integrity, and robustness indicators. Throughput and deadline adherence demonstrated
moderate dispersion, indicating meaningful performance variability across workload and fault
scenarios. Confirmation latency and recovery time displayed larger standard deviations relative to their
means, reflecting right-skewed behavior and the presence of tail conditions under stress. Integrity-
related indicators (completeness, duplicates, and out-of-order confirmations) remained bounded
within operationally interpretable ranges, enabling comparative evaluation across architectures.
Robustness outcomes, including downtime probability and schedule deviation, showed sufficient
spread to support inferential testing in subsequent stages.

Table 2. Descriptive Comparison by Coordination Regime (N =120 per regime)

Metric Centralized Non-BFT Blockchain BFT Blockchain
Transaction throughput (TPS), Mean (SD) 920.3 (120.6) 760.4 (140.9) 547.0 (110.2)
Confirmation latency (seconds), Mean (SD)  1.12 (0.48)  2.70 (0.90) 4.71 (1.30)
Deadline adherence rate (%), Mean (SD) 95.6 (3.9) 89.2 (6.1) 81.4 (7.3)

Data completeness rate (%), Mean (SD) 96.1 (2.7) 97.2 (2.4) 99.1 (1.1)
Downtime probability (%), Mean (SD) 5.20 (2.80)  4.90 (2.30) 2.80 (1.70)
Schedule deviation (minutes), Mean (SD) 224 (11.3)  19.1 (10.0) 14.3 (8.1)
Recovery time (minutes), Mean (SD) 49.0 (20.1) 43.2(18.7) 31.3 (14.9)

Table 2 compared architectures under identical sampling structure and showed distinct performance-
robustness profiles. Centralized coordination produced the highest throughput and lowest
confirmation latency, indicating strong operational speed, while its downtime probability and
recovery-time averages were comparatively higher under fault conditions, reflecting sensitivity to
centralized disruption. Non-BFT blockchain coordination delivered intermediate performance but
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showed less favorable robustness metrics than BFT in terms of downtime, schedule deviation, and
recovery time. BFT-enabled orchestration exhibited lower throughput and higher confirmation latency
but achieved the strongest integrity and robustness indicators, including reduced downtime
probability, lower schedule deviation, and shorter recovery time averages.

Correlation

The correlation analysis examined bivariate associations among consensus performance, data integrity,
and manufacturing robustness variables prior to multivariate modeling. Separate correlation matrices
were first produced for each construct group and then consolidated to evaluate cross-construct
relationships. Results showed coherent and theoretically consistent patterns across coordination
regimes and scenario intensities. Transaction throughput was negatively associated with confirmation
latency and recovery time, indicating that faster processing capacity coincided with reduced temporal
disruption effects. Deadline adherence demonstrated a strong negative association with downtime
probability and schedule deviation, suggesting that timing reliability functioned as a stabilizing
operational mechanism. Sensor-to-ledger data integrity indicators, particularly data completeness and
out-of-order confirmation rates, showed meaningful correlations with robustness outcomes,
supporting their role as an intervening coordination mechanism. Architecture regime indicators were
moderately correlated with both performance and robustness variables, providing an initial
comparative signal while avoiding excessive overlap with outcome measures. Rank-based correlation
estimates closely matched parametric coefficients, confirming that observed relationships were not
artifacts of non-normal distributions. Overall, the correlation structure provided empirical support for
proceeding with regression and mediation testing.

Table 3. Correlation Matrix for Consensus Performance and Manufacturing Robustness Variables

(N =360)

. Deadline Downtime Schedule Recovery
Variable Throughput Latency Adherence Probability Deviation Time
Transaction 1.00 068 059 -0.55 -0.47 -0.51
throughput
Confirmation _0.68 1.00 0.72 0.63 0.58 0.61
latency
Deadline 0.59 072 1.00 -0.66 -0.62 -0.65
adherence rate
Downtime -0.55 063  -0.66 1.00 0.71 0.74
probability
Schedule 047 058  -0.62 071 1.00 0.69
deviation
Recovery time  -0.51 0.61 -0.65 0.74 0.69 1.00

Table 3 showed strong and directionally consistent relationships between consensus performance and
manufacturing robustness outcomes. Higher transaction throughput and deadline adherence were
associated with lower downtime probability, reduced schedule deviation, and shorter recovery times.
Confirmation latency exhibited positive correlations with all robustness degradation indicators,
confirming that delayed consensus was aligned with increased operational instability. The magnitude
of these associations indicated that consensus timing characteristics were closely linked to system-level
robustness behavior, justifying their inclusion as key predictors in subsequent regression models.
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Table 4. Correlations Between Data Integrity Metrics and Manufacturing Robustness Outcomes (N

= 360)

Variable Data Duplicate Out-of-Order = Downtime Schedule Recovery

Completeness Event Rate Confirmation Probability Deviation Time
Data
completeness  1.00 -0.48 -0.56 -0.61 -0.58 -0.60
rate
Duplicate event ;g 1.00 052 054 0.50 053
rate
Out-of-order 50 0.52 1.00 0.62 0.59 0.63
confirmation
Downtime = ) 054 0.62 1.00 071 0.74
probability
Schedule -0.58 0.50 0.59 0.71 1.00 0.69
deviation
Recovery time -0.60 0.53 0.63 0.74 0.69 1.00

Table 4 demonstrated that sensor-to-ledger data integrity metrics were strongly associated with
manufacturing robustness outcomes. Higher data completeness correlated with lower downtime
probability, reduced schedule deviation, and shorter recovery times, indicating that accurate and
complete event recording supported operational stability. In contrast, higher duplicate and out-of-
order confirmation rates were positively correlated with robustness degradation indicators. These
findings supported the conceptual role of data integrity as an intervening coordination mechanism
linking consensus performance to manufacturing robustness, thereby motivating formal mediation
analysis in subsequent regression models.

Reliability and Validity

Reliability and validity evidence was examined to confirm that the measurement framework produced
stable, coherent, and empirically separable constructs suitable for inferential modeling. Replication
stability was assessed using repeated runs under identical parameter settings, and results showed low-
to-moderate run-to-run dispersion for key metrics, indicating that estimates were not driven by
stochastic noise alone. Internal consistency was evaluated for composite constructs representing data
integrity quality and manufacturing robustness, and the indicators demonstrated strong coherence and
acceptable inter-item covariance. Construct validity was supported through association patterns
consistent with the conceptual structure, where stronger coordination performance and higher data
integrity aligned with lower robustness degradation outcomes. Convergent validity was evidenced by
strong indicator load alignment within each construct, while discriminant validity was supported by
limited cross-construct redundancy between data integrity, consensus performance, and robustness
indicators. Model-level validity checks showed stable measurement behavior across architecture
classes and across workload and fault intensity strata, indicating that the measurement framework
performed consistently under varied conditions.

Table 5. Replication Stability for Key Metrics Under Identical Parameter Settings (N = 30)

Metric Mean SD Coefficient of Variation (CV) Min Max
Transaction throughput (TPS) 7584 41.7 0.055 678.0 832.0
Confirmation latency (seconds) 291 0.29 0.100 235 3.62
Downtime probability (%) 412 0.62 0.150 290 5.70
Schedule deviation (minutes) 179 26 0.145 12.8 239
Recovery time (minutes) 406 49 0121 31.0 52.0
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Table 5 summarized replication stability for core performance and robustness metrics under identical
parameter settings using repeated runs. The coefficient of variation values indicated that throughput
and confirmation latency were highly stable across replications, supporting dependable measurement
for performance benchmarking. Robustness outcomes such as downtime probability, schedule
deviation, and recovery time exhibited slightly higher dispersion, which was consistent with stochastic
disturbance and recovery dynamics in cyber-physical networks. The observed ranges remained
bounded and operationally interpretable, indicating that measurement behavior did not fluctuate
erratically across repeated trials. Overall, the stability statistics supported the reliability of run-level
measurement extraction and justified downstream inferential testing.

Table 6. Internal Consistency and Construct Validity Evidence for Composite Constructs (N = 360)

Cronbach’s Composite Max  Shared
Construct Indicators Used 1 P s AVE Variance
Alpha Reliability (MSV)

completeness, duplicates (rev.),

Data Integrity out-of-order (rev.), 0.86 0.88 0.65 0.42

Quality inconsistency detection (rev.)

throughput, latency (rev.),
Consensus finality  stability, ~ deadline 0.89 0.91 0.69 0.47
Performance

adherence
Manufacturin downtime  (rev.), schedule

& deviation (rev.), recovery time 0.84 0.87 0.62 0.45

Robustness

(rev.), throughput stability

Table 6 reported internal consistency and construct validity evidence for the multi-indicator constructs
used in the measurement framework. Cronbach’s alpha and composite reliability values exceeded
commonly accepted thresholds, indicating that indicators cohered well within each construct and
produced stable composite measures. Average variance extracted values showed that each construct
captured substantial variance from its indicators, supporting convergent validity. The maximum
shared variance values were lower than the AVE values for each construct, indicating adequate
discriminant validity and confirming that the constructs were empirically distinguishable rather than
redundant. This evidence supported the suitability of the constructs for hypothesis testing, mediation
analysis, and comparative modeling across architectures.

Collinearity

Collinearity diagnostics were conducted before regression estimation to confirm that overlap among
predictors did not inflate standard errors or distort coefficient interpretation. The evaluation covered
coordination regime indicators, BFT configuration parameters, workload intensity measures, network
topology controls, and consensus performance predictors. The results indicated that the majority of
predictors remained within acceptable collinearity limits, supporting stable multivariate estimation.
Moderate overlap was observed between throughput and latency-related indicators, which was
consistent with their shared dependence on consensus workload and communication conditions. In
addition, topology density showed moderate association with latency behavior, reflecting the influence
of connectivity on message propagation and validation processes. Corrective adjustments were applied
where necessary to maintain interpretability of the final models. Closely related consensus indicators
were consolidated into a standardized consensus performance index for models requiring parsimony,
and all continuous predictors included in interaction terms were mean-centered to reduce non-essential
collinearity. Following these procedures, the retained predictor set demonstrated satisfactory tolerance
and variance inflation statistics, and regression models were estimated without evidence of unstable
coefficients or sign reversals attributable to multicollinearity.
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Table 7. Collinearity Diagnostics for Candidate Predictors Prior to Final Model Specification

Predictor Tolerance @ VIF Condition Index (CI)
Regime: Centralized (dummy) 0.78 1.28 9.6
Regime: Non-BFT blockchain (dummy) 0.76 1.32 10.1
Regime: BFT blockchain (dummy) 0.74 1.35 10.4
BFT fault threshold setting 0.69 145 11.2
Fault intensity index 0.66 1.52 12.0
Workload intensity (event rate level) 0.63 1.59 12.7
Network size (node count) 0.71 1.41 10.9
Network density 0.58 1.72 13.8
Throughput (TPS) 0.42 2.38 189
Confirmation latency (seconds) 0.39 256 19.7
Deadline adherence rate (%) 0.46 217 17.3
Transaction complexity class 0.77 1.30 9.8

Table 7 presented tolerance, variance inflation factors, and condition indices for the candidate
predictors included in the initial model set. The architecture regime indicators, BFT settings, workload
and fault measures, and topology controls remained within low-to-moderate collinearity ranges,
indicating that these predictors contributed distinct information to regression models. The highest
overlap emerged among consensus performance variables, particularly throughput and confirmation
latency, which exhibited moderate VIF values consistent with their interconnected operational
behavior. Condition indices remained below levels typically associated with severe multicollinearity,
supporting stable coefficient estimation. These diagnostics justified proceeding with multivariate
modeling while applying targeted refinements to the consensus predictor set.

Table 8. Post-Correction Collinearity Diagnostics for Final Regression Predictor Set

Predictor (Final Model) Tolerance VIF Condition Index (CI)
Regime indicators (set of dummies) 0.75 1.34 10.3

BFT fault threshold setting 0.70 143 11.1

Fault intensity index 0.67 1.49 11.9

Workload intensity (centered) 0.64 1.56 12.6

Network size (centered) 0.72 1.39 10.8

Network density (centered) 0.60 1.67 13.5

Consensus performance index (standardized composite) 0.55 1.82 14.6

Transaction complexity class 0.78 1.28 9.7

Table 8 reported collinearity statistics after corrective procedures were applied to improve model
interpretability and estimation stability. Centering continuous predictors reduced non-essential
collinearity in models involving interaction terms, while consolidating throughput, latency, and
deadline adherence into a standardized consensus performance index reduced redundancy among
closely related predictors. Post-correction VIF values decreased for the consensus-related predictor set
and remained within acceptable limits across all predictors. Condition indices stayed well below
thresholds associated with unstable regression solutions. These results confirmed that the final
regression specification was not adversely affected by multicollinearity and supported meaningful
hypothesis testing with interpretable coefficients and reliable uncertainty estimation.
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Regression and Hypothesis Testing

The regression analysis evaluated the hypothesized relationships among coordination regime,
Byzantine fault tolerance configuration, consensus performance, data integrity, and manufacturing
robustness using hierarchical and comparative modeling. Baseline models demonstrated that
coordination regime and BFT configuration were significantly associated with robustness outcomes
after controlling for network size, topology density, transaction complexity, demand variability, and
disruption scenario type. Expanded models incorporating consensus performance and data integrity
metrics showed substantial increases in explained variance, indicating that coordination effects
operated partly through performance and integrity mechanisms rather than architecture alone.
Interaction terms revealed that the robustness benefits of BFT-enabled orchestration strengthened
under higher workload intensity and elevated fault conditions, while centralized coordination
performance deteriorated more rapidly under stress. Mediation analysis confirmed that data integrity
quality partially explained the relationship between coordination regime and robustness outcomes. For
time-dependent robustness measures, repeated-measures regression results indicated stable within-
run trajectories and statistically significant differences in recovery and schedule deviation dynamics
across architectures. Collectively, the regression results supported the hypothesized causal structure
and demonstrated that manufacturing robustness was shaped by both architectural design and
operational coordination quality.

Table 9. Hierarchical Regression Results Predicting Manufacturing Robustness Index

Predictor Model 1 Model 2 3 Model 3
Centralized regime (ref.) — — -
Non-BFT blockchain regime -0.18*** -0.09* -0.05
BFT blockchain regime -0.26%** -0.14** -0.08*
BFT fault threshold setting -0.21%** -0.12%* -0.07*
Consensus performance index — -0.41%* -0.29%**
Data integrity quality index — — -0.34%**
Workload intensity 0.24%* 0.18*** 0.15**
Fault intensity 0.29%* 0.22%* 0.19%*
Network size 0.07 0.05 0.04
Network density 0.09* 0.06 0.05
Adjusted R? 0.31 0.52 0.63

*p < 05, **p < 01, **p < 001

Table 9 showed that coordination regime and BFT configuration exerted significant direct effects on
manufacturing robustness in the baseline model. The inclusion of consensus performance substantially
reduced the magnitude of architecture coefficients, indicating that performance dynamics accounted
for a meaningful share of robustness variation. When data integrity quality was added, the effects of
regime indicators were further attenuated but remained statistically significant for BFT-enabled
orchestration, supporting partial mediation. The steady increase in adjusted R? across models
demonstrated improved explanatory power. Consensus performance and data integrity emerged as
the strongest predictors, confirming that operational coordination quality played a central role in
shaping robustness outcomes beyond architectural classification alone.
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Table 10. Interaction and Mediation Effects on Robustness Outcomes

Effect Coefficient SE  95% CI

BFT regime x Workload intensity -0.11** 0.04 [-0.19,-0.04]
BFT regime x Fault intensity -0.14%* 0.05 [-0.24, -0.06]
Indirect effect via consensus performance -0.12%** 0.03 [-0.19,-0.07]
Indirect effect via data integrity -0.09** 0.03 [-0.16, -0.04]
Total mediated effect -0.21%** 0.04 [-0.29,-0.14]

Table 10 reported interaction and mediation results that clarified how coordination architecture
influenced robustness under varying operational stress. The negative interaction coefficients indicated
that BFT-enabled orchestration mitigated robustness degradation as workload and fault intensity
increased, while other architectures showed weaker stress absorption. Mediation estimates
demonstrated that both consensus performance and data integrity transmitted a significant portion of
the architecture effect on robustness, with the combined indirect effect accounting for a substantial
share of the total impact. Confidence intervals excluded zero for all indirect paths, confirming statistical
significance. These findings supported hypotheses proposing mechanism-based robustness
improvements rather than purely structural effects.

DISCUSSION

This study demonstrated that coordination architecture exerted a statistically meaningful influence on
manufacturing robustness outcomes across cyber-physical supply chain networks. In particular, BFT-
enabled blockchain orchestration was associated with lower downtime probability, reduced schedule
deviation, and faster recovery dynamics when compared with centralized and non-BFT blockchain
coordination regimes (Masure et al., 2019). These findings align with earlier empirical and simulation-
based studies that have reported increased vulnerability of centralized coordination systems to
disruption propagation and single-point failure. However, this study extended prior work by
quantifying robustness effects under systematically varied workload and fault conditions, thereby
offering a more granular view of how coordination structure interacts with operational stress. Unlike
studies that focused primarily on performance metrics such as throughput or latency in isolation, this
study treated robustness as a multidimensional dependent construct, capturing both immediate
disruption effects and temporal recovery behavior. The observed attenuation of robustness
degradation under BFT-enabled orchestration is consistent with earlier arguments that distributed trust
and fault tolerance enhance system-level stability. At the same time, this study diverged from prior
findings that suggested blockchain coordination uniformly degrades operational performance,
showing instead that performance trade-offs were context-dependent and mediated by integrity and
synchronization quality (Brutschin, 2017). The comparative results suggest that architecture alone does
not determine robustness; rather, robustness emerges from the interaction between coordination
structure, consensus behavior, and data integrity mechanisms. This interpretation reinforces and
refines earlier conceptual models by providing empirical evidence that robustness advantages
associated with blockchain-based coordination become more pronounced under elevated fault
intensity and workload stress, conditions that are often underrepresented in prior analyses (Hashem et
al., 2015).

Consensus performance indicators, including throughput stability, confirmation latency behavior, and
deadline adherence, were found to explain a substantial portion of the variance in manufacturing
robustness outcomes. This study showed that once consensus performance was introduced into
regression models, the direct effects of coordination regime were partially reduced, indicating that
architectural differences manifested through operational performance channels. This pattern is
consistent with earlier studies that identified consensus delay and throughput bottlenecks as key
determinants of system responsiveness (Kinder, 2014). However, this study advanced the literature by
demonstrating that consensus performance was not merely a technical efficiency concern but a
robustness-relevant mechanism with direct operational consequences. Prior research frequently treated
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consensus metrics as engineering benchmarks disconnected from manufacturing outcomes. In contrast,
the present findings linked consensus timing characteristics directly to downtime probability, recovery
duration, and schedule deviation. The negative association between deadline adherence and
robustness degradation highlighted the importance of temporal reliability rather than raw speed alone.
Earlier studies that emphasized average latency values without accounting for variability and tail
behavior may therefore have underestimated the robustness implications of consensus instability
(Williamson, 2016). By analyzing distributional properties and stress-sensitive behavior, this study
provided a more nuanced interpretation that bridges systems engineering and operations management
perspectives. The results support earlier theoretical claims that consensus mechanisms shape
coordination quality, while also clarifying that their impact on robustness is mediated through
predictability and synchronization rather than throughput maximization alone (Jin et al., 2019).

Data integrity quality emerged as a statistically significant intervening mechanism linking coordination
architecture and manufacturing robustness. This study demonstrated that higher sensor-to-ledger data
completeness and lower rates of duplication and out-of-order confirmation were associated with
reduced downtime probability, smaller schedule deviations, and faster recovery. These findings are
consistent with earlier studies that emphasized the importance of trusted data sharing for supply chain
coordination, particularly in distributed and multi-organization environments (Hang & Kim, 2019).
However, this study contributed new empirical clarity by quantifying integrity effects alongside
consensus performance within a unified analytical framework. Prior research often examined data
integrity as a qualitative benefit of blockchain adoption or as a compliance-related feature rather than
as a measurable operational driver. The mediation results indicated that integrity accounted for a
meaningful share of the robustness advantage observed under BFT-enabled orchestration, confirming
that fault tolerance mechanisms influence outcomes not only by preventing incorrect consensus but
also by preserving the quality of recorded operational data. This interpretation aligns with earlier
conceptual work that framed blockchain as a trust infrastructure but extends it by demonstrating
statistically how integrity translates into robustness (Pham & Tran, 2020). The findings suggest that
robustness gains are unlikely to materialize in blockchain-based systems if data integrity is
compromised at the cyber-physical interface, even when consensus mechanisms function correctly.
This perspective reconciles mixed findings in earlier empirical studies by highlighting integrity as a
necessary but not automatic outcome of blockchain orchestration (FitzPatrick, 2019).

The interaction analysis revealed that the robustness advantages of BFT-enabled orchestration
intensified under higher workload intensity and elevated fault conditions. This study found that while
centralized coordination exhibited strong baseline performance, its robustness deteriorated more
sharply as stress increased (Kenworthy et al., 2014). These results align with earlier resilience studies
that documented nonlinear degradation patterns in centralized and tightly coupled systems. However,
the present findings extend this literature by showing that BFT-enabled architectures absorbed stress
more effectively, exhibiting flatter degradation slopes across workload and fault gradients. Earlier
studies often evaluated architectures under average or nominal conditions, potentially masking
differential stress behavior. By explicitly modeling interactions, this study demonstrated that
architectural benefits are contingent rather than uniform. The results also help explain inconsistencies
in prior evaluations of blockchain-based supply chain systems, where performance penalties were
observed without corresponding robustness benefits (Owens et al., 2014). The findings indicate that
robustness benefits become observable primarily under adverse conditions, suggesting that evaluation
frameworks focused solely on nominal performance may misrepresent system value. This stress-
contingent interpretation aligns with earlier resilience theory while providing empirical validation in a
cyber-physical supply chain context. The interaction findings reinforce the argument that robustness
should be evaluated dynamically rather than through static benchmarks (Azaria et al., 2016).
Recovery-time modeling revealed systematic differences in how coordination regimes influenced
temporal robustness following disruption. This study found that BFT-enabled orchestration was
associated with shorter and more predictable recovery trajectories, whereas centralized coordination
exhibited longer and more variable recovery patterns under comparable conditions. These findings are
consistent with earlier research that identified distributed coordination and redundancy as enablers of
faster system recovery (Harold & Holtz, 2015).
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Figure 12: Blockchain Coordination and Robustness Framework
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However, this study extended prior work by linking recovery dynamics explicitly to consensus stability
and data integrity rather than to structural redundancy alone. Earlier studies frequently attributed
recovery performance to inventory buffers or supplier diversification, whereas the present findings
highlight informational coordination as a critical recovery driver. The repeated-measures analysis
showed that recovery behavior evolved differently over time across architectures, underscoring the
importance of temporal modeling in robustness assessment. This temporal perspective clarifies why
some prior studies reported limited resilience benefits from digital coordination initiatives: without
stable confirmation and integrity mechanisms, digital visibility alone may not accelerate recovery (Van
Wingerden et al., 2017). The findings thus refine earlier conclusions by positioning recovery as a
function of coordinated decision reliability rather than as a purely physical or logistical phenomenon.
The multi-echelon robustness indicators revealed that coordination architecture influenced not only
focal manufacturing performance but also downstream service stability and inventory behavior. This
study found that BFT-enabled orchestration reduced service level variance and dampened inventory
oscillations across supply chain layers. These findings are consistent with earlier studies that
documented the amplification of variability in poorly synchronized supply chains (Shahnaz et al.,
2019). However, this study advanced the literature by demonstrating that shared, verifiable data
environments moderated these amplification effects. Earlier work often attributed oscillation reduction
to demand smoothing or forecasting improvements, whereas the present findings suggest that
confirmation reliability and integrity preservation play equally important roles. The results imply that
robustness benefits propagate across echelons when coordination mechanisms maintain consistent
system state awareness. This interpretation helps reconcile earlier mixed evidence regarding digital
coordination investments by showing that benefits depend on how deeply coordination mechanisms
are integrated into decision processes across tiers. The findings reinforce the view that robustness is an
emergent property of networked coordination rather than a localized operational attribute (Rault et al.,
2014).

Overall, the discussion situates this study’s findings within and beyond earlier research on blockchain-
enabled supply chains, cyber-physical systems, and manufacturing resilience (Langer et al., 2017). The
results corroborate prior theoretical claims regarding the value of distributed trust and fault tolerance
while providing quantitative evidence that clarifies when and how these mechanisms improve
robustness. Unlike studies that framed blockchain adoption as a binary technological shift, this study
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demonstrated that robustness outcomes depend on measurable performance and integrity pathways
(Chambers & Norton, 2016). By integrating consensus performance, data integrity, and robustness
within a single analytical framework, the findings address fragmentation in the existing literature. The
comparative and interaction-based results refine earlier conclusions by emphasizing context sensitivity,
particularly under operational stress. The study contributes to theory by repositioning blockchain
orchestration from a transactional innovation to a coordination reliability mechanism with quantifiable
manufacturing consequences. This synthesis advances understanding of how cyber-physical supply
chain networks behave under uncertainty and how architectural design choices shape robustness
outcomes in measurable ways (Choi & Ji, 2015).

CONCLUSION

This study concluded with a quantitative synthesis of how blockchain orchestration and Byzantine fault
tolerance were associated with manufacturing robustness in cyber-physical supply chain networks
under systematically varied workload and fault conditions. The results demonstrated that coordination
architecture was a significant determinant of robustness outcomes, with BFT-enabled blockchain
orchestration exhibiting lower downtime probability, reduced schedule deviation, and shorter
recovery-time behavior relative to centralized and non-BFT coordination regimes when evaluated
under comparable scenarios. The inferential models further showed that consensus performance and
sensor-to-ledger data integrity functioned as central explanatory mechanisms, evidenced by the
reduction of direct architecture effects after introducing throughput stability, confirmation latency
behavior, deadline adherence, and integrity-quality indicators into expanded specifications. Interaction
estimates indicated that robustness advantages for BFT-enabled orchestration strengthened under
elevated workload intensity and higher fault exposure, highlighting that architecture-dependent
differences were most visible when systems operated under stress profiles that intensified timing
variability, synchronization drift, and data-quality degradation. Mediation results reinforced this
mechanism-driven interpretation by showing that integrity and performance pathways accounted for
a substantial portion of the total effect linking orchestration regime to robustness outcomes, thereby
clarifying why blockchain coordination produced distinct operational profiles across regimes rather
than uniform gains. Time-dependent analyses supported the conclusion that recovery dynamics
differed systematically by coordination design, with more predictable stabilization patterns occurring
when confirmation processes and integrity preservation reduced divergence between physical events
and ledger-confirmed states. Multi-echelon indicators further showed that robustness effects extended
beyond focal production performance into service stability and inventory behavior across network
layers, consistent with the characterization of robustness as an emergent property of interconnected
coordination rather than a localized operational attribute. Overall, the findings established that
manufacturing robustness in distributed cyber-physical supply chains was shaped by the combined
influence of coordination structure, consensus timing behavior, and end-to-end data integrity quality,
providing a quantitatively grounded basis for evaluating orchestration regimes through measurable
robustness outcomes and statistically interpretable mechanisms.

RECOMMENDATIONS

Recommendations for this study were structured to align directly with the measured findings on
coordination architecture, consensus performance, data integrity, and manufacturing robustness in
cyber-physical supply chain networks. First, implementation decisions were recommended to be
anchored in a workload-and-fault profile assessment rather than average-condition benchmarking,
because robustness advantages for BFT-enabled orchestration were most pronounced under elevated
operational stress; therefore, deployment evaluation was recommended to include stress scenarios that
mirror peak event rates, communication impairment, and validator fault exposure. Second, consensus
configuration was recommended to be treated as a performance-governance control variable, with
explicit service-level targets defined for confirmation latency distributions, deadline adherence, and
tail-risk behavior, since timing predictability was more strongly linked to robustness than nominal
speed alone; operational thresholds for acceptable confirmation delays were recommended to be
matched to manufacturing control and scheduling windows. Third, sensor-to-ledger integrity controls
were recommended to be strengthened at the cyber-physical interface because integrity quality
statistically explained a meaningful portion of robustness behavior; validation pipelines were
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recommended to include duplicate suppression, sequence validation, timestamp normalization, and
anomaly screening so that erroneous events were filtered before immutable recording. Fourth,
architectural selection was recommended to follow a comparative evaluation logic that distinguishes
coordination speed from robustness stability; centralized coordination was recommended only where
fault exposure is low and single-point disruption risk is acceptable, while BFT-enabled orchestration
was recommended where multi-party governance, adversarial exposure, and cross-border
coordination raise trust and continuity requirements. Fifth, monitoring and assurance practices were
recommended to use integrated dashboards combining consensus metrics, integrity metrics, and
robustness indicators, enabling early detection of coordination degradation through rising out-of-order
confirmations, declining deadline adherence, and increasing latency variance. Sixth, multi-echelon
coordination policies were recommended to standardize event definitions and measurement intervals
across partners to reduce synchronization drift and inventory oscillations, since multi-tier stability
depended on consistent system-state awareness. Seventh, future empirical replication within
operational testbeds was recommended using the same measurement framework to validate the stress-
contingent relationships observed in the scenario-based design, ensuring that robustness effects
generalize across diverse manufacturing sectors and network topologies.

LIMITATION

This study’s limitations were primarily associated with the modeling scope, measurement conditions,
and generalizability boundaries inherent to a controlled, scenario-based quantitative design. First, the
empirical basis relied on simulated network-run executions and structured system logs generated
under parameterized workload and fault conditions; although this approach supported comparability
and replication stability, it constrained external validity because real manufacturing ecosystems
contain organizational behaviors, contractual frictions, and unobserved operational constraints that are
difficult to reproduce fully in a model-driven environment. Second, the representation of cyber-
physical event generation depended on assumptions about sensor behavior, timestamping, and event
semantics; even when error patterns were parameterized, the diversity of industrial sensing
technologies and site-specific calibration practices limited the ability to claim that all sensor-to-ledger
integrity dynamics were captured comprehensively. Third, the coordination architectures were
evaluated under standardized governance assumptions, while real consortium networks differ
substantially in node trust relationships, onboarding policies, and operational compliance rules; such
governance heterogeneity can alter validator participation behavior and influence both consensus
performance and integrity outcomes. Fourth, the study treated robustness as a measurable dependent
construct using downtime probability, schedule deviation, throughput stability, recovery-time
behavior, service variance, and inventory oscillation indicators; while these metrics are common in
quantitative operations research, they do not capture all dimensions of robustness such as product
quality outcomes, workforce availability constraints, or financial risk impacts that may be critical in
certain manufacturing sectors. Fifth, the statistical models summarized relationships at the network-
run level, which supported inferential clarity but limited micro-level interpretation of individual node
behaviors, localized disruption effects, and tier-specific dynamics that may require finer-grained
modeling. Sixth, consensus performance and integrity metrics were operationalized through log-
derived indicators that reflect system-state behavior, yet measurement error may still exist due to event
aggregation choices, window definitions, and the transformation pipeline used to compute composite
indices.
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