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Abstract 
This study quantitatively examined how blockchain orchestration and Byzantine fault tolerance (BFT) were 
associated with manufacturing robustness in cyber-physical supply chain networks under varying workload 
and fault conditions. A controlled, scenario-based experimental design was implemented using network-run–
level simulation outputs and system log data, enabling systematic comparison across three coordination 
regimes: centralized coordination, non-BFT blockchain coordination, and BFT-enabled blockchain 
orchestration. The analytic sample comprised 360 validated network runs spanning low, medium, and high 
event loads and low, moderate, and elevated fault intensities. Manufacturing robustness was operationalized 
using downtime probability, throughput stability, schedule deviation, recovery-time behavior, service level 
variance, and inventory oscillation indicators, while consensus performance and data integrity were modeled 
as explanatory mechanisms. Descriptive findings showed that centralized coordination achieved the highest 
mean throughput (920.3 TPS) and lowest mean confirmation latency (1.12 seconds) but exhibited higher 
downtime probability (5.20%) and longer recovery time (49.0 minutes) under fault stress. BFT-enabled 
orchestration demonstrated lower throughput (547.0 TPS) and higher confirmation latency (4.71 seconds) but 
achieved superior robustness outcomes, including lower downtime probability (2.80%), reduced schedule 
deviation (14.3 minutes), and faster recovery (31.3 minutes). Correlation analysis indicated strong 
associations between consensus performance and robustness, with deadline adherence negatively correlated 
with downtime probability (r = −0.66) and recovery time (r = −0.65). Data integrity metrics were also strongly 
related to robustness, as data completeness showed a negative correlation with downtime probability (r = 
−0.61). Hierarchical regression results revealed that coordination regime and BFT configuration explained 
31% of the variance in manufacturing robustness, which increased to 63% when consensus performance and 
data integrity were included. Mediation analysis showed that consensus performance and data integrity jointly 
accounted for a substantial portion of the architecture effect, with a total indirect effect of −0.21. Interaction 
models further indicated that the robustness advantages of BFT-enabled orchestration strengthened under 
higher workload and fault intensity. Overall, the findings demonstrated that manufacturing robustness in 
cyber-physical supply chains was shaped by coordination architecture through measurable performance and 
integrity mechanisms, providing quantitative evidence on how distributed trust and fault tolerance influenced 
operational stability under stress. 
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INTRODUCTION 
Blockchain-orchestrated manufacturing systems are grounded in the formal definition of blockchain as 
a distributed digital ledger that records transactions across multiple networked nodes in a 
synchronized and immutable manner. Each transaction is cryptographically linked to previous records, 
forming a continuous and tamper-resistant chain of data blocks (Rahman et al., 2020). Within 
manufacturing environments, blockchain is not limited to financial exchanges but operates as an 
infrastructural coordination layer that records operational events, process states, and transactional 
interactions across organizational boundaries. Cyber-physical systems are defined as tightly integrated 
assemblies of computational logic, communication networks, and physical components that interact 
continuously through sensing, control, and actuation mechanisms. In manufacturing contexts, cyber-
physical systems encompass industrial sensors, programmable logic controllers, robotics, embedded 
software, and analytics platforms that translate physical production activities into structured digital 
data (Zhao et al., 2021).  
 

Figure 1: Blockchain-Orchestrated Manufacturing System 

 
Supply chain networks are structured as interconnected systems of material flows, information 
exchanges, and financial transactions linking suppliers, manufacturers, logistics providers, 
distributors, and service partners across geographic regions. When cyber-physical systems are 
embedded across these networks, supply chains evolve into cyber-physical supply chain networks 
characterized by continuous data generation, real-time observability, and algorithmic coordination. 
Blockchain orchestration introduces a shared digital backbone that records cyber-physical events as 
verifiable system states accessible to authorized participants. This integration establishes a unified 
operational record that supports synchronization across multiple actors without reliance on centralized 
control. From a quantitative perspective, such systems are analyzed using measurable properties 
including transaction latency, data consistency rates, synchronization accuracy, system throughput, 
and fault tolerance thresholds (Bodkhe et al., 2020). These properties define the analytical foundation 
for examining manufacturing robustness within blockchain-orchestrated cyber-physical supply chain 
networks. 
Byzantine fault tolerance is defined as the ability of a distributed system to maintain correct and 
consistent operation even when a portion of its components behave unpredictably, maliciously, or 
inconsistently. In manufacturing supply chain networks, faults may arise from sensor malfunctions, 



Journal of Sustainable Development and Policy, September 2023, 34-72 

36 
 

communication disruptions, compromised devices, erroneous data reporting, or adversarial 
manipulation of digital infrastructure (Vatankhah Barenji et al., 2020). Traditional centralized 
manufacturing information systems exhibit vulnerability to such faults due to single points of failure 
and limited cross-organizational validation. Byzantine fault-tolerant mechanisms introduce 
mathematically defined resilience by enabling consensus among distributed nodes as long as faulty 
participants remain below a specified proportion of the total network. Within blockchain architectures, 
Byzantine fault tolerance governs how transactions are validated, ordered, and committed to the 
shared ledger under uncertain conditions. When applied to cyber-physical supply chain networks, 
these mechanisms ensure that operational data generated by distributed manufacturing assets remains 
consistent, verifiable, and resistant to manipulation (Zhao et al., 2020). Quantitative system analysis 
treats Byzantine fault tolerance as a reliability parameter that influences consensus latency, message 
complexity, network bandwidth consumption, and system availability. These parameters directly 
affect manufacturing performance metrics such as downtime frequency, production scheduling 
stability, coordination accuracy, and recovery speed following disturbances. Byzantine fault tolerance 
therefore functions as a measurable safeguard against systemic degradation in distributed 
manufacturing environments. Its analytical relevance lies in the fact that manufacturing robustness 
depends not only on physical redundancy and inventory buffers but also on the integrity and 
consistency of data used for operational decision-making. By bounding the impact of faulty or 
malicious nodes, Byzantine fault-tolerant blockchain systems provide a quantifiable foundation for 
resilient coordination across cyber-physical manufacturing networks (Leng et al., 2020).  
Cyber-physical supply chain networks are defined by continuous interactions between physical 
production processes and digital control systems across multiple organizational tiers. Sensors 
embedded in manufacturing equipment, transportation assets, storage facilities, and handling systems 
generate time-stamped data reflecting machine status, material movement, environmental conditions, 
and process performance. This data feeds optimization models, scheduling algorithms, inventory 
control systems, and logistics coordination platforms that govern supply chain operations (Ratasich et 
al., 2019). From a quantitative perspective, cyber-physical supply chains are modeled as dynamic 
networks composed of interdependent nodes, stochastic inputs, and feedback loops. Blockchain 
orchestration introduces a standardized mechanism for recording, validating, and sharing cyber-
physical events across all participating entities. Each physical event captured by sensors can be 
translated into a digital transaction that becomes part of a shared and immutable system record. 
Quantitative performance indicators such as data latency, synchronization error, transaction finality 
time, and system throughput become central to evaluating network behavior. The cyber-physical 
nature of these systems creates bidirectional causality, where digital decisions influence physical 
actions and physical outcomes generate new data streams (Vo et al., 2018). These interactions are 
analytically represented using hybrid modeling approaches that combine discrete-event simulation, 
control theory, and network analysis. In manufacturing contexts, such models enable systematic 
evaluation of system behavior under varying demand patterns, equipment failures, and logistical 
disruptions. Cyber-physical supply chain networks therefore constitute measurable systems whose 
performance characteristics can be quantified, simulated, and statistically analyzed. This quantifiability 
provides the basis for rigorous assessment of blockchain-orchestrated coordination mechanisms within 
manufacturing environments (Gürpinar et al., 2021). 
Manufacturing robustness is defined as the capacity of production systems to maintain stable 
operational performance under variability, disturbances, and structural uncertainty. This attribute is 
quantitatively assessed using indicators such as throughput stability, recovery time, inventory 
variance, service level consistency, and deviation from planned production schedules. In distributed 
manufacturing networks, robustness depends on synchronized decision-making, accurate data 
exchange, and effective fault containment mechanisms (Jabbar et al., 2021). Cyber-physical integration 
enhances robustness by enabling continuous monitoring of physical processes and rapid response 
through automated control actions. Blockchain orchestration further strengthens robustness by 
ensuring that operational data remains consistent, traceable, and verifiable across all participating 
entities. When combined with Byzantine fault tolerance, blockchain systems prevent corrupted, 
delayed, or manipulated data from propagating through the manufacturing network. Quantitative 
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robustness analysis often employs simulation-based stress testing, probabilistic reliability modeling, 
and network resilience metrics. These methods evaluate how manufacturing systems respond to 
disruptions affecting suppliers, production facilities, transportation links, or information systems. 
Robustness is therefore treated as an emergent system-level property resulting from the interaction of 
physical assets, digital infrastructure, and coordination mechanisms (Wu et al., 2021). Blockchain-
orchestrated cyber-physical supply chain networks provide structured and high-integrity data 
environments that support precise measurement of robustness-related variables. This analytical 
framing positions robustness as a central dependent variable in quantitative studies of advanced 
manufacturing systems operating under complex and distributed conditions. 

Figure 2: Manufacturing Robustness Quantitative Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
International manufacturing networks operate across multiple geographic regions, regulatory 
frameworks, and institutional environments. These networks involve coordination among 
geographically dispersed suppliers, production facilities, logistics providers, and distribution partners. 
Quantitatively, international manufacturing networks exhibit increased uncertainty, extended lead 
times, and greater exposure to operational disruptions (Rejeb et al., 2019). Distributed coordination 
mechanisms are therefore essential for maintaining stability and consistency across borders. 
Blockchain-based orchestration enables shared visibility and standardized record-keeping among 
international partners without reliance on centralized authorities. Cyber-physical systems deployed 
across global manufacturing facilities generate harmonized data streams reflecting real-time 
operational conditions. Byzantine fault tolerance ensures that no single regional node can compromise 
the integrity of the shared system record. Quantitative coordination metrics such as synchronization 
delay, reconciliation frequency, audit accuracy, and data consistency rates are used to evaluate system 
performance in international contexts (Rejeb et al., 2019). These metrics support comparative analysis 
across regions, industries, and organizational structures. International manufacturing networks thus 
provide a meaningful empirical and analytical context for examining blockchain-orchestrated cyber-
physical supply chain systems as globally scalable coordination infrastructures. 
Quantitative analysis of blockchain-orchestrated cyber-physical supply chain networks relies on 
integrative modeling approaches drawn from systems engineering, operations research, and computer 
science. Blockchain performance is evaluated using metrics such as consensus latency, transaction 
throughput, fault tolerance thresholds, and communication overhead. Cyber-physical systems are 
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modeled using hybrid system frameworks that capture interactions between digital control logic and 
physical processes (Bada et al., 2021). Supply chain dynamics are represented using stochastic 
programming, network flow optimization, and agent-based modeling. Combined models assess how 
blockchain-based coordination influences manufacturing robustness under varying operational 
conditions. Simulation experiments generate measurable outputs such as downtime probability, 
inventory deviation, service level fluctuation, and coordination accuracy. These outputs enable 
statistical evaluation of system behavior under controlled scenarios. Quantitative modeling therefore 
provides the methodological foundation for examining the performance characteristics of blockchain-
orchestrated cyber-physical manufacturing networks (Mohiul, 2020; Pitropakis et al., 2019). 
Data integrity is a foundational requirement for quantitative decision-making in manufacturing 
systems (Jinnat & Kamrul, 2021; Rabiul & Samia, 2021). Cyber-physical supply chains depend on 
accurate sensor data to support production planning, quality control, maintenance scheduling, and 
logistics coordination. Blockchain consensus mechanisms transform distributed data inputs into a 
unified and verifiable system record accessible to all authorized participants. Byzantine fault tolerance 
strengthens this process by mathematically constraining the influence of erroneous or malicious nodes 
(Mohiul & Rahman, 2021; Rahman & Abdul, 2021; Ramanan et al., 2021). Quantitative coordination 
metrics such as data consistency rate, synchronization accuracy, error propagation probability, and 
reconciliation frequency are used to evaluate system performance (Haider & Shahrin, 2021; Zulqarnain 
& Subrato, 2021). Manufacturing robustness emerges from the interaction of these coordination 
mechanisms rather than from isolated system components. Blockchain-orchestrated cyber-physical 
supply chain networks therefore represent measurable coordination systems whose performance can 
be rigorously assessed using quantitative methods grounded in system modeling and statistical 
analysis (Islam et al., 2021; Uddin et al., 2022; Akbar & Sharmin, 2022).  
The primary objective of this quantitative study is to formally examine how blockchain orchestration 
combined with Byzantine fault tolerance shapes measurable robustness outcomes in cyber-physical 
supply chain networks operating within manufacturing environments. This objective is pursued 
through a set of operationally defined and statistically testable aims that translate the study’s central 
constructs into quantifiable system properties. A first objective is to measure the relationship between 
Byzantine fault tolerance configuration parameters and network-level reliability indicators, including 
consensus correctness rate, transaction finality stability, and tolerance thresholds under node faults or 
adversarial behaviors. A second objective is to quantify the performance cost associated with Byzantine 
fault-tolerant consensus within manufacturing-grade cyber-physical data flows by estimating changes 
in transaction latency, message overhead, throughput variance, and synchronization delay under 
different network sizes and data generation rates. A third objective is to evaluate the effect of 
blockchain-based orchestration on data integrity and traceability in cyber-physical supply chain 
processes by assessing measurable changes in reconciliation frequency, inconsistency detection rate, 
and auditability indicators across multi-actor workflows. A fourth objective is to model robustness as 
a dependent performance construct and empirically test how variations in orchestration and fault-
tolerance design influence manufacturing outcomes such as downtime probability, schedule deviation, 
disruption propagation magnitude, and recovery time distribution. A fifth objective is to construct and 
validate a quantitative system model that integrates cyber-physical event streams with blockchain 
consensus dynamics in order to estimate coordination stability under operational variability, including 
demand shocks, sensor errors, communication interruptions, and delayed confirmations. A sixth 
objective is to compare robustness and coordination metrics across alternative architectural scenarios, 
including centralized coordination, non-BFT blockchain coordination, and BFT-enabled blockchain 
orchestration, using consistent experimental conditions and standardized performance measures. 
Collectively, these objectives are designed to produce a coherent quantitative assessment of how trust, 
consensus, and cyber-physical data integrity interact as measurable mechanisms of manufacturing 
robustness within distributed supply chain networks. 
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LITERATURE REVIEW 
The literature review section synthesizes quantitative and empirically measurable research streams that 
collectively define blockchain-orchestrated cyber-physical supply chain networks and the role of 
Byzantine fault tolerance in manufacturing robustness. This section is structured to align directly with 
a quantitative research design by prioritizing constructs that can be operationalized, measured, and 
statistically analyzed, including consensus performance (latency, throughput, finality), fault tolerance 
thresholds, data integrity rates, synchronization accuracy, disruption propagation indices, and 
robustness outcomes such as downtime probability and recovery-time distributions. The review 
organizes prior work into tightly scoped themes that move from foundational technologies to system-
level manufacturing performance, emphasizing definitional clarity, model structures, variable 
specification, and measurement methods used in peer-reviewed studies. It distinguishes between 
blockchain as a distributed coordination layer and cyber-physical systems as real-time data-generating 
and control architectures, then positions Byzantine fault tolerance as a reliability mechanism that can 
be parameterized and tested under varying network and disturbance conditions. The section also 
integrates quantitative supply chain literature on robustness and resilience to clarify how 
manufacturing outcomes are represented in statistical models, simulation experiments, and network 
metrics. The goal of this review is to provide a defensible theoretical and empirical base for constructing 
testable hypotheses, selecting measurement indicators, specifying model variables, and justifying the 
quantitative methodology used in the study. 
Blockchain-Orchestrated Cyber-Physical Supply Chain Networks 
Blockchain orchestration in cyber-physical supply chain networks is operationally defined in the 
literature as a distributed coordination mechanism that governs how transactions, events, and process 
states are validated, recorded, and synchronized across multiple autonomous actors. Unlike centralized 
coordination systems, blockchain orchestration does not function as a single control authority but 
rather as a shared protocol layer that standardizes interaction rules among participants (Shao et al., 
2021). Quantitative studies conceptualize blockchain orchestration as an independent coordination 
variable whose influence can be measured through indicators such as transaction confirmation 
consistency, cross-organization synchronization stability, and coordination delay variance (Foysal & 
Subrato, 2022; Rahman, 2022). Within manufacturing supply chains, orchestration captures the degree 
to which operational decisions are aligned through shared ledger states rather than bilateral data 
exchanges. This alignment is particularly relevant in cyber-physical environments where sensor-
generated events trigger downstream decisions related to production scheduling, logistics execution, 
and inventory control (Habibullah & Mohiul, 2023; Zulqarnain, 2022). The literature consistently treats 
orchestration as a structural attribute of system architecture rather than as a technological artifact, 
emphasizing its role in shaping interaction patterns, trust distribution, and information symmetry 
(Hasan & Waladur, 2023; Rabiul & Mushfequr, 2023; Wang et al., 2020). Empirical and simulation-based 
research operationalizes blockchain orchestration by distinguishing between manual coordination, 
platform-mediated coordination, and protocol-driven coordination. In this framing, orchestration 
strength reflects the extent to which process coordination is automated, verifiable, and resistant to 
unilateral manipulation (Shahrin & Samia, 2023; Rakibul & Alam, 2023). Quantitative modeling further 
positions orchestration as a system-level variable that mediates relationships between cyber-physical 
data integrity and manufacturing performance outcomes. As a result, blockchain orchestration is 
analytically defined as a measurable coordination construct that influences how distributed 
manufacturing networks behave under operational complexity and uncertainty (Kozhaya et al., 2021; 
Rifat & Rebeka, 2023). 
Ledger integrity is a central construct in blockchain-based supply chain research and is quantitatively 
defined as the degree to which recorded data remains consistent, unaltered, and verifiable across all 
participating nodes (Kumar, 2023; Saikat & Aditya, 2023). The literature identifies consistency rate as a 
primary integrity indicator, reflecting the proportion of nodes that maintain identical ledger states over 
time. High consistency rates indicate effective consensus and reliable synchronization, which are 
essential for coordinated decision-making in manufacturing systems (Pajooh et al., 2021; Zulqarnain & 
Subrato, 2023). Immutability is operationalized through proxy measures that assess resistance to record 
modification after confirmation, often evaluated by analyzing rollback frequency, fork occurrence, or 
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unauthorized alteration attempts. Tamper-evidence metrics further quantify integrity by measuring 
how quickly and reliably deviations from expected ledger states are detected and flagged. In cyber-
physical supply chain contexts, these integrity indicators are directly linked to the trustworthiness of 
sensor data, production records, and logistics transactions. Quantitative studies emphasize that ledger 
integrity is not binary but exists along a spectrum influenced by network size, consensus design, and 
fault tolerance configuration. Measurement frameworks frequently aggregate multiple integrity 
indicators to produce composite indices that reflect overall system trustworthiness (Wang et al., 2021). 
These indices are then statistically associated with operational outcomes such as audit accuracy, 
dispute resolution efficiency, and coordination reliability. The literature therefore treats ledger integrity 
as a measurable latent construct composed of observable indicators that collectively capture the 
reliability of blockchain-orchestrated data environments in manufacturing supply chains. 
 

Figure 3: Blockchain Orchestration Measurement Framework 

Cyber-physical event streams represent the continuous flow of data generated by sensors, controllers, 
and embedded systems across manufacturing and logistics operations. Quantitative research defines 
these streams in terms of their temporal structure, data quality, and system responsiveness. Sampling 
frequency is used to capture how often physical states are measured and reported, influencing system 
visibility and control precision. Timestamp precision reflects the accuracy with which events are 
temporally ordered, which is critical for synchronization across distributed processes (Wu et al., 2020). 
Data fidelity indicators assess the extent to which recorded events accurately represent physical reality, 
incorporating dimensions such as completeness, noise level, and signal consistency. In blockchain-
orchestrated environments, cyber-physical event streams are transformed into ledger transactions, 
making their quantitative properties central to system performance. The literature highlights that 
variability in event stream quality can propagate through coordination mechanisms and affect 
downstream decision accuracy. Measurement approaches often involve statistical characterization of 
event delay distributions, missing data rates, and out-of-order arrivals. These metrics are used to 
evaluate the suitability of cyber-physical data for real-time manufacturing coordination (Abbas et al., 
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2020). By treating event streams as quantifiable inputs rather than raw signals, prior studies establish a 
structured basis for analyzing how digital representations of physical processes interact with 
blockchain-based coordination infrastructures. Cyber-physical event quantification therefore functions 
as a foundational step in operationalizing system-level constructs in distributed manufacturing 
research. 
Supply chain networks are frequently modeled in the literature as graph structures composed of nodes 
representing organizations or facilities and edges representing material, information, or financial flows. 
Quantitative topology analysis uses graph-based metrics to capture structural properties that influence 
coordination, robustness, and disruption propagation. Degree metrics measure the number of 
connections associated with each node, providing insight into dependency concentration and 
coordination complexity (Abbas et al., 2020). Centrality indicators assess the relative importance of 
nodes within the network, reflecting control leverage, information brokerage, or vulnerability 
significance. Path length metrics quantify the average number of steps required for information or 
materials to traverse the network, influencing latency and synchronization challenges. In blockchain-
orchestrated cyber-physical supply chains, these topological characteristics interact with consensus 
mechanisms and data dissemination processes. The literature emphasizes that network structure affects 
how quickly ledger updates propagate and how faults impact overall system behavior. Quantitative 
studies often integrate topology metrics with performance indicators to assess coordination efficiency 
and robustness. By mapping supply chain networks into measurable graph attributes, researchers 
establish a formal link between structural design and operational outcomes (Melo et al., 2019). This 
approach enables comparative analysis across alternative network configurations and supports 
statistically grounded evaluation of distributed coordination architectures. As a result, topological 
mapping is treated as a core component of construct operationalization in quantitative supply chain 
and manufacturing systems research. 
Performance in Manufacturing Blockchains 
Quantitative consensus performance in manufacturing blockchains is commonly anchored in 
transaction throughput, which is treated as the measurable capacity of a distributed ledger to ingest, 
validate, and commit operational events generated by industrial processes. In cyber-physical 
manufacturing environments, data loads are shaped by heterogeneous event sources such as machine 
sensors, quality inspection stations, warehouse scanners, and logistics tracking systems, each 
producing transactions at different rates and with different priority levels (Casadei et al., 2020). The 
literature frames throughput as a key dependent performance metric because it directly determines 
whether a blockchain network can keep pace with real-time operational activity. Empirical studies and 
simulation-based investigations model industrial throughput demand using variable event rates that 
reflect peak production cycles, batch manufacturing patterns, and intermittent bursts caused by 
exception handling and rework loops. Researchers frequently distinguish between nominal throughput 
observed under stable loads and effective throughput under realistic contention, where competing 
participants submit transactions concurrently (Jamil et al., 2021). Quantitative evaluations also consider 
how transaction size, endorsement complexity, and validation workload affect throughput stability. In 
manufacturing contexts, throughput is further interpreted as a coordination constraint, since 
insufficient throughput leads to backlog accumulation, delayed state synchronization, and increased 
divergence between physical reality and the digital ledger representation. The literature therefore treats 
throughput not as an isolated technical indicator but as a measurable determinant of system-level 
coordination quality. Studies in industrial blockchain benchmarking commonly report throughput 
using standardized test conditions, varying network size, transaction complexity, and data arrival rates 
to estimate scalability. This body of work positions throughput modeling as a foundational element for 
assessing whether consensus systems support manufacturing-grade cyber-physical event streams 
(Taylor et al., 2020). 
Consensus latency is a central quantitative construct in evaluating manufacturing blockchains, as it 
captures the time elapsed between event generation and ledger confirmation that the network treats as 
authoritative. The literature decomposes latency into operationally meaningful components to support 
measurement precision and comparative evaluation across systems. Propagation delay represents the 
time required for a transaction or block proposal to disseminate across nodes, which is influenced by 
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network topology, bandwidth, and geographic distribution of participants (Indumathi et al., 2020). 
Validation delay reflects the time consumed by verification tasks such as signature checks, 
endorsement policy evaluation, transaction ordering, and conflict detection, which vary depending on 
workload complexity and computational resources. Finality delay describes the time until a committed 
state is considered stable and irreversible under the protocol’s settlement rules, a property that is 
especially important for manufacturing execution decisions that depend on confirmed data. 
Quantitative research highlights that these latency components behave differently under industrial 
workloads, where event arrival rates fluctuate and where system performance must remain stable 
under concurrent submissions (Alfandi et al., 2021). Studies measure latency not only through averages 
but also through distributional properties such as variability, skewness, and extreme values that 
influence operational risk. In manufacturing settings, latency is treated as a coordination limiter 
because production and logistics decisions often operate within strict timing windows. When 
confirmation delays increase, the cyber representation of the supply chain lags behind physical 
processes, reducing synchronization accuracy across organizations. The literature therefore uses 
latency decomposition to identify bottlenecks, evaluate protocol suitability, and support statistical 
testing of performance differences between consensus designs. This decomposition approach 
strengthens quantitative modeling by enabling researchers to link specific latency drivers to 
measurable manufacturing coordination outcomes (Liu et al., 2020). 
 

Figure 4: Manufacturing Blockhain Performance Analysis Framework 

 
Finality is treated in quantitative blockchain research as a measurable property describing how reliably 
and how quickly a transaction becomes an irreversible part of the ledger’s authoritative state. In 
manufacturing contexts, finality is essential because blockchain-confirmed events often represent 
quality approvals, inventory movements, machine status changes, and compliance-critical records that 
must be trusted for coordination across multiple actors (Zhou et al., 2020). The literature emphasizes 
that finality should be characterized statistically rather than reported as a single nominal value. 
Variance in finality time is used as a key indicator of predictability, capturing the stability of 
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confirmation under varying workloads and network conditions. Tail risk is used to represent the 
probability of extreme delays, where a small portion of events experiences significantly longer 
confirmation times than the typical case. Such tail behavior is analytically important in industrial 
environments because even infrequent confirmation delays can disrupt scheduling, increase buffer 
requirements, and reduce responsiveness in control-dependent workflows. Quantitative studies 
commonly estimate confidence around finality measures by reporting uncertainty ranges, repeated 
trial statistics, or distribution-based summaries that allow comparison across experimental settings (Xie 
et al., 2019). Researchers also examine how factors such as node count, adversarial behavior 
assumptions, geographic dispersion, and transaction contention influence finality distributions. In 
manufacturing blockchains, finality is interpreted as a risk-sensitive coordination metric, meaning that 
not only average confirmation speed matters, but also the reliability of confirmation within operational 
deadlines. This literature stream frames statistical finality characterization as a core requirement for 
evaluating protocol suitability in cyber-physical manufacturing networks where timing consistency 
affects coordination stability and robustness measurement (Falazi et al., 2019). 
Byzantine Fault Tolerance  
Byzantine fault tolerance is treated in quantitative distributed-systems and industrial blockchain 
research as a reliability mechanism whose behavior can be parameterized and evaluated under 
adversarial participation. In manufacturing-oriented permissioned blockchains, BFT is operationalized 
through a fault threshold parameter that defines how many participating nodes can behave arbitrarily 
while the system still reaches correct and consistent agreement on ledger state (Tahir et al., 2020). This 
parameter is not merely a security descriptor; it functions as a measurable reliability setting that 
influences correctness outcomes under compromised participants, misconfigured nodes, and 
inconsistent communication behavior. Quantitative studies conceptualize correctness as the probability 
that all non-faulty nodes converge on the same valid transaction order and committed state under 
specified threat conditions. In cyber-physical supply chain networks, adversarial participation can 
represent malicious insiders, compromised edge gateways, or corrupted validators that inject 
inconsistent operational records (Srinivas & Das, 2020). Researchers therefore treat correctness as a 
system-level outcome linked to measurable conditions such as the proportion of adversarial nodes, the 
rate of adversarial messages, and the structure of communication among participants. Studies model 
these conditions using scenario-driven parameter sets that reflect realistic manufacturing consortium 
settings, where participants may include multiple firms with varying trust relationships and 
governance rules. The literature positions BFT threshold tuning as a core design variable because it 
balances reliability assurance against operational performance demands. When the threshold is too low 
for the threat profile, correctness outcomes degrade under fault conditions and consensus results 
become unreliable. When the threshold is configured conservatively, overhead increases and 
confirmation dynamics slow, affecting manufacturing coordination timing (Alkhazaali & Oğuz, 2020). 
This body of work treats BFT parameterization as a quantitative reliability design choice that can be 
tested empirically through controlled experiments and statistically summarized through correctness 
outcomes across repeated trials. 
Message complexity and communication overhead are consistently identified in the literature as 
primary predictors of performance degradation in Byzantine fault-tolerant blockchain systems. In 
quantitative evaluations, message complexity refers to the volume and pattern of inter-node 
communications required to validate transactions, confirm ordering, and establish agreement on ledger 
state (Wang et al., 2021). Communication overhead captures measurable resource consumption 
associated with these messages, including bandwidth usage, network congestion effects, serialization 
costs, and processing time devoted to message verification and retransmission. Manufacturing 
blockchains operating in cyber-physical supply chains face unique constraints because event streams 
can be high frequency and geographically distributed, meaning that communication cost directly 
affects transaction confirmation timeliness. Quantitative studies demonstrate that as the number of 
participating nodes increases, communication requirements expand rapidly, leading to measurable 
reductions in throughput and increases in latency variance. This behavior is particularly relevant when 
blockchain orchestration is used for multi-tier supply chain coordination, where validation traffic can 
compete with operational network traffic used for industrial control, telemetry, and logistics systems. 
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Researchers frequently treat communication overhead as an independent predictor variable for 
performance outcomes such as confirmation delay, deadline miss ratio, and synchronization drift 
between physical and ledger-confirmed states (Nikolić et al., 2021). Empirical investigations also 
consider how network topology, geographic dispersion, and asymmetric link quality amplify overhead 
effects in consortium manufacturing settings. In addition, studies explore how batching strategies, 
message aggregation, and hierarchical communication structures alter overhead patterns under 
identical industrial workloads. The literature therefore positions message complexity and 
communication overhead as central measurable mechanisms that mediate the relationship between 
BFT reliability guarantees and operational feasibility in manufacturing-grade cyber-physical supply 
chain networks (Chen et al., 2020). 
 

Figure 5: Byzantine Fault Tolerance Reliability Framework 

 
Quantitative research on BFT-enabled systems relies on explicit attack and fault models to represent 
adversarial and failure behaviors in measurable terms. In manufacturing supply chain networks, 
threats are not framed abstractly; they are translated into operationally meaningful parameters such as 
node compromise rate, data forgery rate, and network partition probability. Node compromise rate 
represents the proportion of consensus participants that may behave maliciously or unpredictably due 
to cyber intrusion, insider manipulation, or misconfiguration (Jiang et al., 2020). Data forgery rate 
represents the frequency with which falsified operational events are introduced, such as incorrect 
production confirmations, fabricated logistics scans, or manipulated quality records. Network partition 
probability captures the likelihood that the communication graph splits into disconnected segments, 
often driven by infrastructure failure, routing instability, or targeted denial conditions. These 
parameters allow studies to construct controlled scenarios that reflect realistic cyber-physical 
environments, where edge devices and gateways may operate under varying security postures and 
connectivity quality. The literature treats these models as necessary because BFT correctness guarantees 
are condition-dependent, meaning that reliability outcomes vary with the intensity and structure of 
faults (Zhao et al., 2021). Quantitative studies often implement these fault models through controlled 
message corruption, validator misbehavior scripts, selective transaction omission, and simulated 
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network delay or packet loss. Results are analyzed using measurable outcomes such as divergence rate 
between node ledger states, inconsistency detection frequency, confirmation delay inflation, and 
transaction rejection patterns. In manufacturing contexts, these outcomes are further interpreted 
through operational consequences, including delayed scheduling updates, inaccurate inventory 
synchronization, and increased reconciliation workload. This body of work establishes that well-
specified quantitative fault models form the basis for statistically valid assessment of BFT reliability in 
blockchain-orchestrated cyber-physical supply chain networks (Rahman et al., 2020). 
Reliability evaluation of Byzantine fault-tolerant consensus in manufacturing blockchains is structured 
around measurable metrics that capture whether the system remains correct, responsive, and 
operational when faults occur. Consensus safety rate represents the proportion of trials in which the 
network avoids committing conflicting or invalid ledger states, reflecting the system’s ability to 
preserve correctness under adversarial or faulty behavior (Ziller et al., 2021). Liveness rate represents 
the proportion of trials in which the system continues to make progress by committing valid 
transactions within acceptable timing boundaries, reflecting responsiveness under stress. System 
availability under fault injection represents the fraction of operational time during which the network 
remains able to accept and finalize transactions, capturing practical continuity for manufacturing 
coordination. In cyber-physical supply chain networks, these reliability metrics connect directly to 
operational feasibility because production and logistics systems require both correctness and timely 
confirmation of events. Quantitative studies implement fault injection to test these metrics under 
controlled conditions, varying the proportion of faulty nodes, the intensity of message corruption, and 
the severity of network impairment (Fu et al., 2020). Reliability outcomes are statistically summarized 
through rates, distributions, and variability measures that allow comparison across consensus designs 
and configuration settings. Researchers frequently interpret changes in safety, liveness, and availability 
as indicators of robustness potential, since unstable consensus behavior can propagate uncertainty 
across distributed manufacturing actors. These metrics are also evaluated in relation to workload 
intensity, highlighting that reliability and performance interact under industrial data loads. The 
literature therefore treats safety, liveness, and availability as core quantitative reliability constructs that 
define how well BFT mechanisms support dependable coordination in blockchain-orchestrated 
manufacturing supply chains (Yu et al., 2021). 
Cyber-Physical Supply Chain Analytics 
Sensor error is a fundamental analytical concern in cyber-physical supply chain networks because 
sensor-generated data directly feeds blockchain-ledger records that guide manufacturing and logistics 
decisions. Quantitative literature treats sensor error not as isolated anomalies but as statistically 
distributed phenomena influenced by hardware degradation, environmental conditions, calibration 
drift, communication noise, and intermittent power instability (Rejeb et al., 2021). Error distributions 
are commonly characterized using frequency, magnitude, and persistence dimensions, allowing 
researchers to examine how inaccuracies propagate from physical measurements into digital records. 
In blockchain-orchestrated environments, sensor errors are particularly consequential because 
erroneous events, once validated and recorded, become part of an immutable ledger state shared across 
organizations. Ledger validity is therefore operationally linked to the quality of upstream sensor data 
rather than solely to consensus correctness. Studies emphasize that even small but systematic sensor 
deviations can accumulate into significant discrepancies when aggregated across high-frequency event 
streams. Quantitative analyses often assess how different error profiles affect transaction rejection rates, 
inconsistency detection frequency, and post-hoc reconciliation workload (Ciatto et al., 2020). In 
manufacturing supply chains, sensor error impacts include misreported production completion, 
incorrect inventory counts, inaccurate condition monitoring, and false logistics confirmations. These 
effects are amplified when data feeds automated coordination processes such as replenishment triggers 
or quality release workflows. The literature frames ledger validity as a dependent construct that reflects 
the interaction between sensor reliability, validation logic, and consensus acceptance rules. As a result, 
sensor error distributions are treated as measurable input variables that influence the probability that 
ledger records accurately represent physical reality. This framing establishes sensor integrity as a 
prerequisite for meaningful blockchain-based coordination in cyber-physical supply chain analytics 
(Stanciu, 2017). 
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Data quality measurement is a core analytical theme in cyber-physical supply chain research because 
operational decisions depend on the reliability of digital representations of physical processes. 
Quantitative studies consistently decompose data quality into measurable dimensions, including 
completeness, accuracy, timeliness, and consistency. Completeness reflects the proportion of expected 
events that are successfully captured and recorded, accounting for data loss caused by sensor outages, 
transmission failures, or system bottlenecks (Aranda et al., 2019). Accuracy represents the degree to 
which recorded values align with actual physical states, capturing measurement error and distortion 
effects. Timeliness measures the delay between physical event occurrence and digital availability for 
coordination, which is especially critical in manufacturing environments with tight execution 
windows. Consistency assesses whether identical events are represented uniformly across system 
components and organizational boundaries.  
 

Figure 6: Cyber-Physical Supply Chain Analytics Framework 

 
In blockchain-orchestrated supply chains, these dimensions are evaluated not only at the point of data 
generation but also after ledger confirmation, making them end-to-end integrity indicators. 
Quantitative frameworks often aggregate these dimensions into composite indices that summarize 
overall data quality performance. Empirical studies link variations in data quality metrics to 
coordination inefficiencies, reconciliation frequency, and increased operational risk (Aranda et al., 
2019). In manufacturing contexts, poor data quality manifests as schedule deviations, inventory 
imbalance, quality misclassification, and delayed response to disruptions. The literature treats data 
quality as a continuous variable rather than a binary attribute, enabling statistical analysis of how 
incremental degradation affects system performance. This analytical approach positions data quality 
measurement as a foundational component of cyber-physical supply chain analytics and as a critical 
mediator between sensor reliability and blockchain ledger trustworthiness (Pavlidis et al., 2020). 
Cross-organization data synchronization is a defining challenge in distributed supply chain networks 
where multiple firms rely on shared digital records to coordinate physical activities. Quantitative 
research frames synchronization as the alignment of event representations across organizational 
systems and ledger nodes over time. Drift is used as a primary metric to capture gradual divergence 
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between locally perceived states and the globally accepted ledger state, often caused by confirmation 
delays or asynchronous data submission (Swan, 2016). Duplicate event rates quantify the frequency 
with which identical physical events are recorded multiple times due to redundant sensing, 
overlapping system boundaries, or retry mechanisms. Out-of-order arrival metrics measure the extent 
to which events are received and confirmed in sequences that differ from their actual occurrence order, 
which can distort process interpretation and coordination logic. In blockchain-orchestrated cyber-
physical supply chains, these synchronization issues are analytically significant because ledger 
consensus enforces a single authoritative order that may lag behind physical reality. Quantitative 
studies examine how synchronization errors affect downstream processes such as inventory 
reconciliation, shipment matching, and compliance verification. Metrics are often collected through log 
analysis, event correlation techniques, and temporal alignment assessments across organizational 
systems. The literature emphasizes that synchronization quality is influenced by network latency, 
transaction throughput limits, and organizational data governance practices (Guo et al., 2021). By 
operationalizing synchronization through measurable indicators, researchers establish a structured 
basis for evaluating the effectiveness of blockchain coordination in maintaining coherent system-wide 
views of distributed manufacturing and logistics operations. 
Traceability is a central analytical construct in cyber-physical supply chain systems and is 
quantitatively defined by the system’s ability to reconstruct the history, transformation, and movement 
of products and information across the network. Event lineage depth measures how many process 
stages or organizational handoffs can be reliably linked through recorded events, reflecting the 
granularity of traceability coverage (Carminati et al., 2018). Trace resolution time quantifies the 
duration required to retrieve and assemble relevant records during investigation, auditing, or 
exception handling. Audit coverage ratio represents the proportion of operational activities that are 
supported by verifiable digital records within the ledger. In blockchain-enabled environments, 
traceability metrics are directly tied to ledger completeness, data consistency, and confirmation 
stability. Quantitative studies demonstrate that higher traceability resolution correlates with reduced 
investigation effort, improved compliance verification, and faster anomaly detection. In manufacturing 
supply chains, traceability supports quality assurance, recall management, and regulatory reporting, 
making its measurement operationally significant. Researchers often evaluate traceability performance 
using simulated recall scenarios, audit exercises, and controlled data omission tests to assess system 
responsiveness and coverage (Ceccarelli et al., 2020). The literature treats traceability not as an abstract 
benefit but as a measurable system capability with definable performance thresholds. By quantifying 
lineage depth, resolution efficiency, and coverage extent, prior studies establish traceability as a core 
outcome variable in cyber-physical supply chain analytics and a key indicator of blockchain-
orchestrated data integrity. 
Manufacturing Robustness as a Dependent Variable 
Manufacturing robustness is widely treated in the literature as a dependent system-level performance 
construct that reflects the ability of production and supply chain operations to maintain stable output 
under variability and disturbance. Quantitative studies consistently operationalize robustness using 
metric families that capture different dimensions of operational stability. Downtime probability 
represents the likelihood that manufacturing processes experience operational stoppage within a 
defined observation window, reflecting vulnerability to equipment failure, coordination breakdown, 
or information inconsistency (Swan, 2015). Throughput stability measures the variability of production 
output over time, capturing fluctuations relative to planned or nominal capacity. Schedule deviation 
quantifies the extent to which actual production and delivery timelines diverge from predefined 
schedules, serving as an indicator of coordination effectiveness across cyber-physical and 
organizational layers. These metrics are treated as complementary rather than interchangeable, as each 
captures a distinct aspect of robustness behavior. In blockchain-orchestrated cyber-physical supply 
chains, robustness metrics are evaluated in relation to data integrity, consensus performance, and 
synchronization quality. Quantitative studies frequently analyze robustness using time-series data, 
event logs, and simulation outputs to assess how disturbances propagate into measurable performance 
degradation. The literature emphasizes that robustness should be assessed under realistic operating 
conditions that include demand variability, processing delays, and information latency. By grouping 
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downtime probability, throughput stability, and schedule deviation into a structured metric family, 
researchers establish a consistent analytical framework for comparing robustness across alternative 
system architectures and coordination mechanisms (Rathina et al., 2019). This framing positions 
robustness as a multidimensional outcome that can be statistically analyzed and linked to upstream 
coordination and reliability variables. 
Recovery performance is a central dimension of manufacturing robustness and is quantitatively 
evaluated through the distribution of time required for a system to return to stable operation following 
a disturbance. Rather than relying on single-point estimates, the literature emphasizes modeling 
recovery time as a distribution to capture variability across disruption scenarios and system states. 
Mean recovery time is commonly used as a summary indicator representing the average duration of 
performance degradation, while distributional spread reflects uncertainty and inconsistency in 
recovery behavior. Hazard-rate approaches are applied to examine the likelihood that recovery occurs 
at different time intervals, providing insight into whether recovery accelerates or slows as disruption 
persists (Arjomandi-Nezhad et al., 2020).  
 

Figure 7: Manufacturing Robustness Metrics Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In cyber-physical supply chain contexts, recovery time is influenced by factors such as data 
synchronization speed, decision latency, resource flexibility, and coordination reliability. Quantitative 
studies analyze recovery distributions using simulation experiments, historical disruption datasets, 
and controlled stress scenarios. These analyses reveal that systems with high data integrity and 
coordination accuracy exhibit narrower recovery-time distributions, indicating more predictable 
performance. Manufacturing robustness research treats recovery modeling as essential because 
prolonged or highly variable recovery undermines schedule reliability and increases buffer 
requirements. By framing recovery time as a probabilistic outcome rather than a deterministic value, 
the literature supports more nuanced evaluation of robustness under uncertainty (Franke et al., 2014). 
This approach allows recovery behavior to be compared across system configurations, coordination 
mechanisms, and disruption intensities, reinforcing its role as a key dependent variable in 
manufacturing robustness analysis. 
Disruption propagation is a defining feature of complex manufacturing supply chains and is 
quantitatively examined through metrics that capture how localized disturbances spread across 
networked operations. The ripple effect magnitude represents the extent to which an initial disruption 
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amplifies as it moves through interconnected production stages, suppliers, and logistics channels. 
Network shock transmission metrics quantify how quickly and widely performance degradation 
travels across nodes and tiers, reflecting structural interdependencies and coordination efficiency 
(Faber et al., 2017). In cyber-physical supply chain networks, disruption propagation is influenced by 
real-time data availability, synchronization accuracy, and decision response timing. Quantitative 
studies use network-based models and simulation experiments to trace how disturbances in one 
location affect throughput, inventory levels, and service performance elsewhere in the system. These 
models measure propagation intensity using indicators such as cumulative performance loss, duration 
of downstream impact, and number of affected nodes. The literature emphasizes that robust 
manufacturing systems limit both the magnitude and speed of disruption transmission, preventing 
cascading failures. Blockchain-orchestrated coordination is often evaluated by examining whether 
shared, verifiable data reduces uncertainty amplification during disruptions (Barabadi & Ayele, 2018). 
By operationalizing ripple effects through measurable propagation metrics, researchers establish a 
structured method for assessing how coordination architectures influence system-wide stability. This 
quantitative framing treats disruption propagation not as an abstract risk but as an observable and 
analyzable phenomenon that directly contributes to overall manufacturing robustness. 
Models for Supply Chain Resilience  
Quantitative network science models represent supply chain systems as graphs in which nodes 
correspond to firms, facilities, or cyber-physical assets, and edges represent material, information, or 
coordination relationships. Within this framework, robustness is evaluated by analyzing how network 
connectivity degrades under node or edge removal. Connectivity loss ratio is a core metric used to 
measure the proportion of network connectivity lost when specific components fail or are removed, 
providing a direct indicator of structural vulnerability (Tachaudomdach et al., 2021). Critical node 
sensitivity captures the extent to which the removal or degradation of highly connected or strategically 
positioned nodes disrupts overall network performance. In manufacturing supply chains, such nodes 
may represent key suppliers, central distribution hubs, or dominant coordination platforms. 
Quantitative studies apply these measures to assess how concentrated dependencies increase 
susceptibility to cascading disruptions. In blockchain-orchestrated cyber-physical supply chains, 
connectivity loss has both physical and informational dimensions, since node failure may affect 
material flow as well as ledger participation (Shen et al., 2019). Network robustness analysis therefore 
considers how consensus participation and data dissemination paths overlap with physical supply 
routes. Researchers use graph perturbation experiments to simulate targeted attacks, random failures, 
and clustered disruptions, observing how connectivity metrics evolve. The literature emphasizes that 
robust networks exhibit gradual connectivity degradation rather than abrupt fragmentation, indicating 
resilience to localized shocks. By applying graph robustness measures, researchers establish a formal 
method for linking structural design to resilience outcomes in distributed manufacturing systems 
operating under shared consensus mechanisms (Cats & Jenelius, 2015). 
Cascading failure models are widely used in quantitative supply chain research to examine how 
localized disruptions propagate through interconnected networks. These models conceptualize 
disruptions as probabilistic contagion processes, where failure at one node increases the likelihood of 
failure at adjacent nodes through dependency relationships. In manufacturing supply chains, such 
cascades may arise from supplier outages, logistics delays, information inconsistencies, or coordination 
breakdowns. Probabilistic contagion metrics quantify the likelihood, speed, and extent of disruption 
spread across the network (Wang et al., 2019). Quantitative studies analyze cascading behavior by 
simulating failure initiation at different nodes and tracking resulting performance degradation over 
time. In cyber-physical supply chain networks, cascading failures are influenced by both physical 
dependencies and digital coordination mechanisms. Blockchain-based consensus affects how quickly 
disruption information is shared and how uniformly system state changes are recognized across 
participants. Researchers examine whether shared ledger confirmation dampens uncertainty or 
introduces delay that alters contagion dynamics. Metrics such as cascade size, propagation depth, and 
time to stabilization are used to compare resilience across network configurations. The literature 
highlights that resilient networks limit contagion by isolating disturbances and preventing overload 
transfer to adjacent nodes (Stochino et al., 2019). By framing cascading failures probabilistically, 
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network science models provide a quantitative lens for evaluating how distributed consensus 
architectures interact with structural dependencies to shape manufacturing resilience. 
Redundancy and flexibility are treated in network science literature as structural properties that 
enhance resilience by providing alternative options for material flow and coordination. Alternative 
path ratio measures the availability of multiple distinct routes between nodes, reflecting the network’s 
capacity to reroute flows when primary connections are disrupted. Supplier substitutability indices 
quantify the extent to which demand at one node can be met by alternative suppliers without 
significant performance degradation. In manufacturing supply chains, these metrics capture both 
physical redundancy and coordination adaptability (Revilla et al., 2019).  

Figure 8: Supply Chain Network Robustness Metrics 

 
Quantitative studies emphasize that redundancy must be evaluated in relation to dependency strength, 
capacity constraints, and coordination delay. In blockchain-orchestrated environments, redundancy 
also applies to consensus participation, where multiple validators or data sources can compensate for 
faulty or unavailable nodes. Researchers assess how redundant paths influence synchronization speed 
and ledger confirmation stability under stress conditions. Flexibility metrics are often derived from 
network topology analysis combined with operational constraints, enabling evaluation of how quickly 
systems adapt to disruption. The literature shows that networks with higher redundancy and 
substitutability exhibit lower disruption amplification and faster recovery (Patriarca et al., 2021). By 
quantifying redundancy and flexibility through structured network metrics, researchers establish 
measurable links between supply chain design and resilience outcomes under distributed coordination 
regimes. 
Trade-Off Modeling 
Quantitative trade-off modeling in manufacturing blockchains begins with the estimation of security 
cost functions that capture how enhanced protection mechanisms affect operational performance. 
Security overhead is not treated as an abstract penalty but as a measurable set of performance 
degradations associated with cryptographic processing, consensus coordination, and fault-tolerance 
enforcement (Solinen et al., 2017). Latency penalty represents the additional delay introduced by 
validation steps, message exchanges, and confirmation protocols required to secure distributed 
agreement. Throughput reduction captures the decrease in effective transaction processing capacity as 
security-related computation and communication consume system resources. Resource consumption 
reflects the measurable use of processing power, memory, network bandwidth, and energy associated 
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with maintaining secure consensus participation. In cyber-physical manufacturing environments, these 
costs directly influence the timeliness and reliability of operational data used for production 
scheduling, quality control, and logistics coordination. Quantitative studies estimate security cost 
functions by comparing baseline system performance under minimal protection to performance under 
progressively stronger security configurations. These comparisons are conducted using controlled 
workloads that reflect industrial data generation patterns and coordination requirements. The 
literature emphasizes that security costs scale nonlinearly with network size, transaction complexity, 
and fault tolerance settings (Paul & Venkateswaran, 2020). As a result, security overhead is modeled as 
a continuous performance constraint rather than a fixed system attribute. This framing enables 
statistical analysis of how incremental increases in security strength translate into measurable impacts 
on manufacturing coordination efficiency and responsiveness. 

Figure 9: Security–Performance Trade-Off Modeling Framework 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multi-objective optimization models are widely used in the literature to analyze trade-offs between 
security assurance and manufacturing performance in distributed consensus systems. These models 
treat consensus configuration and fault threshold settings as decision variables that simultaneously 
influence reliability outcomes and operational efficiency. In manufacturing blockchains, higher fault 
tolerance thresholds increase resistance to adversarial behavior and system inconsistency but also 
intensify communication overhead and confirmation delay (Barzegkar-Ntovom et al., 2020). 
Quantitative optimization approaches evaluate these competing effects by defining performance 
objectives related to throughput stability, latency adherence, and reliability metrics such as safety and 
liveness rates. Rather than seeking a single optimal configuration, researchers identify sets of feasible 
solutions that represent balanced trade-offs between security robustness and manufacturing 
responsiveness. These solution sets allow decision-makers to evaluate how different configurations 
align with operational priorities and system constraints. Optimization studies frequently incorporate 
workload variability, network size, and fault intensity parameters to reflect realistic cyber-physical 
environments. By framing consensus selection as a multi-criteria decision problem, the literature moves 
beyond binary comparisons toward structured evaluation of configuration alternatives (Montazeri et 
al., 2021). This approach enables systematic assessment of how incremental changes in consensus 
design influence multiple performance dimensions simultaneously. Multi-objective optimization 
therefore provides a quantitative framework for selecting blockchain configurations that maintain 
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acceptable manufacturing performance while meeting predefined security and reliability requirements. 
Sensitivity analysis is a core methodological tool in quantitative trade-off modeling, used to assess how 
variations in system parameters affect performance and robustness outcomes. In the context of 
manufacturing blockchains, sensitivity frameworks examine how changes in consensus settings, fault 
thresholds, network size, and workload intensity influence key performance indicators. Parameter 
elasticity measures the degree to which small changes in a parameter produce proportional changes in 
outcomes such as latency, throughput, or downtime probability (Joao et al., 2018). Robustness surfaces 
are constructed to visualize performance stability across ranges of parameter values, revealing regions 
where system behavior remains stable and regions where it degrades rapidly. Quantitative studies use 
sensitivity analysis to identify critical parameters that disproportionately influence manufacturing 
performance under distributed consensus. These analyses are often conducted through repeated 
simulation experiments or controlled stress tests that vary one or more parameters while holding others 
constant. The literature emphasizes that sensitivity results support informed system design by 
highlighting where performance margins are narrow and where configuration flexibility exists 
(Ponnambalam et al., 2014). In cyber-physical supply chain contexts, sensitivity analysis also helps 
assess how external variability, such as demand fluctuation or communication instability, interacts with 
security configurations. By systematically mapping parameter impact, sensitivity frameworks provide 
empirical grounding for understanding trade-offs between security overhead and manufacturing 
robustness. 
Statistical comparison of alternative coordination architectures is a central approach used to evaluate 
trade-offs between security mechanisms and manufacturing performance. The literature commonly 
contrasts centralized coordination systems, non-fault-tolerant blockchain architectures, and Byzantine 
fault-tolerant blockchain systems under equivalent operational conditions. Centralized architectures 
typically exhibit low coordination latency and high throughput but concentrate risk and reduce fault 
resilience. Non-BFT blockchain systems distribute coordination but offer limited protection against 
adversarial behavior or inconsistent participation (Bow & Zaiotti, 2020). BFT-enabled architectures 
introduce stronger reliability guarantees at the cost of increased coordination overhead. Quantitative 
comparison frameworks assess these architectures using standardized metrics such as transaction 
delay distributions, throughput variance, deadline adherence rates, and availability under fault 
conditions. Statistical methods are applied to evaluate whether observed performance differences are 
systematic and meaningful rather than incidental. Comparative studies often include repeated trials, 
controlled workloads, and consistent network configurations to ensure validity. Results are interpreted 
in terms of trade-off profiles rather than absolute superiority, highlighting how each architecture 
performs across different dimensions of manufacturing coordination (Leuprecht et al., 2021). This 
literature stream establishes that security-performance trade-offs are architecture dependent and must 
be evaluated using rigorous quantitative comparison rather than qualitative assessment. Such 
comparisons provide a structured basis for understanding how coordination design choices shape 
manufacturing system behavior under distributed consensus. 
Used in Prior Quantitative Studies 
Quantitative studies examining blockchain-orchestrated cyber-physical supply chain systems rely on 
diverse dataset types to capture operational complexity and coordination dynamics. Synthetic event 
streams are widely used to simulate high-frequency manufacturing data under controlled conditions, 
allowing researchers to vary event rates, transaction sizes, fault intensity, and network participation 
levels systematically (Trein et al., 2019). These datasets provide experimental flexibility and 
repeatability, enabling rigorous performance benchmarking across alternative consensus and 
coordination configurations. Testbed manufacturing data represents another important dataset 
category, typically generated from laboratory-scale production systems, pilot factories, or controlled 
industrial environments equipped with sensors and automation platforms. Such data captures realistic 
timing patterns, machine behavior, and process variability while maintaining experimental control. 
Multi-partner transaction logs are used to represent coordination across organizational boundaries, 
capturing event submissions, ledger confirmations, and reconciliation activity among multiple 
stakeholders. These logs reflect the distributed nature of manufacturing supply chains and support 
analysis of synchronization behavior, data consistency, and auditability (Breimo et al., 2017). 
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Quantitative studies often combine these dataset types to balance realism and experimental control, 
using synthetic streams for stress testing and real-world logs for validation. Dataset selection is treated 
as a methodological design choice because data characteristics directly influence performance metrics 
such as latency, throughput, and robustness indicators. By explicitly categorizing dataset types, the 
literature establishes transparent foundations for empirical evaluation and supports comparability 
across studies examining blockchain-based coordination in manufacturing contexts (Yongpeng Wu et 
al., 2020). 

Figure 10: Quantitative Methodological Framework for Blockchain CPS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Validation strategies are essential in quantitative research on manufacturing blockchains to ensure that 
observed performance patterns are robust, generalizable, and not artifacts of specific datasets or 
experimental configurations. Cross-validation is commonly used to partition datasets into multiple 
subsets, allowing models to be trained and evaluated across different data segments. This approach 
supports assessment of model stability under varying operational conditions. Bootstrapping 
techniques are applied to generate repeated samples from observed data, enabling estimation of 
variability and confidence around performance metrics such as throughput stability, recovery time, 
and synchronization accuracy (Ambrosio, 2017). Out-of-sample robustness testing evaluates whether 
models and performance conclusions hold when applied to data generated under different conditions, 
such as altered workload intensity, network size, or fault scenarios. In simulation-based studies, 
validation often involves comparing model outputs against known baseline behaviors or 
independently generated datasets. Quantitative research emphasizes that validation must account for 
both statistical reliability and operational plausibility, ensuring that modeled behaviors align with 
manufacturing realities. Validation results are typically reported using distributional summaries, 
variability measures, and consistency checks across experimental runs. By employing multiple 
validation strategies, prior studies strengthen the credibility of conclusions drawn about blockchain 
performance and manufacturing robustness (Biondi & Giannoccolo, 2015). This methodological 
emphasis supports reproducibility and facilitates comparison across different empirical investigations 
within the field. 
Simulation approaches form a central methodological pillar in quantitative research on blockchain-
orchestrated cyber-physical supply chains, as they allow exploration of complex system behavior under 
controlled yet realistic conditions. Discrete-event simulation is frequently used to model sequences of 
manufacturing and logistics events, capturing queuing behavior, resource contention, and timing 
dependencies. Agent-based simulation represents supply chain actors, machines, and validators as 
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autonomous entities whose interactions generate emergent system behavior (Shokri-Ghadikolaei et al., 
2016). This approach is particularly useful for examining coordination dynamics and disruption 
propagation in decentralized environments. Hybrid cyber-physical system models integrate 
continuous physical processes with discrete digital events, enabling representation of sensor data 
generation, control actions, and ledger confirmation within a unified framework. Quantitative studies 
use these simulation approaches to assess performance metrics such as latency distributions, 
throughput degradation, recovery dynamics, and synchronization drift. Simulation experiments often 
involve repeated runs under varying parameter configurations to generate statistically meaningful 
results. The literature emphasizes that simulation fidelity depends on accurately modeling both 
physical process constraints and digital coordination mechanisms (Zeitlin & Overdevest, 2021). By 
leveraging diverse simulation techniques, researchers capture multi-scale interactions between 
physical operations and blockchain consensus, supporting rigorous analysis of manufacturing 
robustness and coordination efficiency, without reliance on simplified assumptions. 
Method  
Research Design 
A quantitative, explanatory study design was employed to test how blockchain orchestration and 
Byzantine fault tolerance settings were associated with measurable manufacturing robustness in cyber-
physical supply chain networks. The design was implemented as a controlled, scenario-based 
experimental study supported by simulation outputs and system log data, allowing performance and 
robustness indicators to be observed under standardized operating conditions. The unit of analysis was 
defined at the network-run level, where each run represented a complete execution of the cyber-
physical supply chain model under a specified consensus configuration, workload intensity, and fault 
condition. The study was structured as a comparative architecture evaluation in which three 
coordination regimes were examined under identical disturbance and workload profiles: centralized 
coordination, non-BFT blockchain coordination, and BFT-enabled blockchain orchestration. 
Experimental conditions were randomized across runs to reduce ordering effects, and multiple 
replications were executed for each configuration to stabilize estimates of mean performance and 
variability. The observation window for each run was fixed to ensure comparability of throughput, 
latency distributions, synchronization drift, and robustness outcomes. Disturbance scenarios included 
operational variability, injected node faults, and network impairment patterns consistent with cyber-
physical environments. All outcome measures were computed from time-stamped event traces and 
ledger-confirmation logs, enabling distributional analysis rather than reliance on single-point 
performance summaries. 
Population 
The study population was defined as manufacturing cyber-physical supply chain networks that used 
distributed coordination mechanisms to record and synchronize operational events across multiple 
organizational entities. This population was represented analytically using a networked system model 
containing manufacturers, upstream suppliers, logistics partners, and validation nodes responsible for 
transaction confirmation. The sampling frame was operationalized as a set of simulated network 
instances generated from parameter ranges reflecting typical consortium manufacturing conditions, 
including variation in node count, network density, event arrival intensity, and disruption exposure.  
Network instances were treated as representative configurations of real manufacturing supply chain 
structures rather than as specific firms or industries. Each instance included cyber-physical event 
generators representing production and logistics processes and a coordination layer that captured 
centralized, non-BFT, or BFT-enabled operation. Runs were drawn from this frame using stratified 
scenario selection to ensure coverage across low, medium, and high workload intensities and across 
low, moderate, and elevated fault conditions. The effective sample size was defined as the total number 
of completed network runs across all configurations and replications, and all runs that failed pre-
defined integrity checks were excluded to prevent invalid or incomplete traces from biasing statistical 
estimates. 
Variables and Measurement Framework 
Blockchain orchestration strength was treated as an independent construct operationalized through the 
coordination regime implemented in each run and the degree of protocol-based confirmation required 
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for event acceptance. Byzantine fault tolerance configuration was treated as an independent construct 
represented by the fault threshold setting and the enabled BFT consensus mode, while fault intensity 
was treated as an experimental factor captured through the injected rate of adversarial or faulty 
validator behavior and the imposed communication impairment profile. Data integrity quality was 
treated as a mediator construct represented by end-to-end sensor-to-ledger accuracy indicators, 
including event completeness rate, inconsistency detection frequency, duplicate event rate, and out-of-
order confirmation incidence derived from event logs.  
 

Figure 11: Methodology of This Study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consensus performance was treated as a process construct represented by transaction throughput, 
confirmation latency distributions, finality stability, and deadline adherence rate calculated from 
ledger timestamps. Manufacturing robustness was treated as the primary dependent construct 
represented by downtime probability, throughput stability over time, schedule deviation magnitude, 
and recovery-time distribution summaries computed from production-state trajectories and fulfillment 
timelines. Multi-echelon robustness was represented through service level variance and inventory 
oscillation indicators calculated across supply chain layers. Control variables were included to isolate 
architecture effects and comprised network size, network density, transaction complexity class, 
baseline demand variability level, and disruption scenario type. All measures were computed using 
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consistent sampling intervals and identical observation windows across runs, and variable extraction 
procedures were standardized through a single event-processing pipeline to maintain measurement 
comparability. 
Analytical Techniques and Statistical Procedures 
The statistical plan was executed in sequential stages to support both descriptive characterization and 
inferential testing. Data screening was performed first, including checks for missing timestamps, 
invalid ordering, and extreme outliers caused by failed runs, followed by transformation of raw logs 
into run-level metrics. Distributional properties were then assessed for key performance outcomes 
using summary statistics, variance estimates, and tail-behavior indicators to capture non-normal 
patterns typical of latency and recovery outcomes. Architecture-level differences across the three 
coordination regimes were tested using mean comparison procedures appropriate to distributional 
assumptions, with robust alternatives applied when variance heterogeneity or non-normality was 
observed. Multi-factor comparisons examining the combined effects of coordination regime, workload 
intensity, and fault intensity were estimated using factorial modeling approaches, allowing interaction 
effects to be tested for throughput, latency stability, and robustness outcomes. Regression-based 
models were then fitted to estimate the association between consensus performance variables and 
manufacturing robustness indicators while controlling for network topology and demand variability. 
Mediation testing was applied to evaluate whether data integrity metrics accounted for part of the 
relationship between coordination regime and robustness outcomes, using resampling-based inference 
for indirect effects. For time-dependent outcomes such as recovery trajectories and schedule deviation 
evolution, time-series summaries were constructed at the run level and analyzed through repeated-
measures modeling structures that accounted for within-run autocorrelation. Model diagnostics were 
conducted to verify residual behavior, multicollinearity risk, and sensitivity to influential observations, 
and results were reported using effect-size estimates and uncertainty intervals derived from repeated-
run variability rather than relying on single-run outcomes. 
Reliability and Validity 
Reliability was established through replication, standardized measurement extraction, and stability 
checks across repeated runs for each experimental condition. Metric reliability was evaluated by 
computing run-to-run variability under identical parameter settings and verifying that key indicators 
such as throughput, confirmation delay, and downtime probability converged toward stable central 
tendencies as replications increased. Internal validity was supported by controlled manipulation of 
architecture type, workload intensity, and fault conditions while holding observation windows and 
network baselines constant, which reduced confounding from uncontrolled operational variation. 
Construct validity was addressed by aligning each theoretical construct with multiple observable 
indicators, ensuring that blockchain orchestration, data integrity, consensus performance, and 
manufacturing robustness were represented through measurable and interpretable metrics. Content 
validity was strengthened through the inclusion of both cyber-level performance metrics and 
manufacturing-level outcome metrics so that coordination behavior and operational consequences 
were jointly evaluated. External validity was supported by modeling multiple network topologies and 
scenario intensities, which reduced dependence on a single configuration and allowed findings to be 
interpreted across a range of manufacturing-consortium-like conditions. Statistical conclusion validity 
was reinforced through assumption checks, use of robust procedures when distributional requirements 
were not met, and reporting of uncertainty intervals based on repeated-run distributions, ensuring that 
inferences reflected variability inherent in cyber-physical coordination systems. 
FINDINGS 
Descriptive Analysis 
The descriptive analysis summarized network-run outcomes across coordination regimes, workload 
intensities, and fault conditions. Overall, transaction throughput and deadline adherence showed clear 
separation by architecture type, while confirmation latency and recovery-time behavior displayed 
right-skewed distributions with visible tail risk under elevated faults. Centralized coordination 
produced the highest throughput and the lowest confirmation latency, whereas BFT-enabled 
orchestration showed lower throughput but higher integrity and better robustness stability under fault 
injection. Non-BFT blockchain coordination exhibited intermediate throughput and latency but greater 
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variability in integrity and synchronization indicators. Robustness outcomes indicated that downtime 
probability and schedule deviation increased materially as workload and fault intensity rose, with the 
steepest increases observed in non-BFT settings. Data screening removed a small portion of runs due 
to incomplete timestamps and invalid ordering, leaving a stable analytic sample for subsequent 
correlation and regression testing. 
 
Table 1. Overall Descriptive Statistics Across All Network-Runs (N = 360) 
 

Variable Mean SD Min Max 

Transaction throughput (TPS) 742.5 190.8 320.0 1125.0 

Confirmation latency (seconds) 2.84 1.46 0.62 8.90 

Finality stability (0–1) 0.963 0.031 0.850 0.995 

Deadline adherence rate (%) 88.7 8.9 62.0 99.0 

Data completeness rate (%) 97.8 2.4 89.5 100.0 

Duplicate event rate (%) 1.62 0.88 0.20 4.90 

Out-of-order confirmation (%) 2.10 1.25 0.10 6.80 

Downtime probability (%) 4.30 2.60 0.60 12.40 

Schedule deviation (minutes) 18.6 10.9 2.5 55.0 

Recovery time (minutes) 41.2 19.4 12.0 110.0 

Service level variance (0–1) 0.072 0.038 0.012 0.190 

Inventory oscillation index (0–1) 0.214 0.086 0.060 0.480 

 
Table 1 summarized the full network-run sample and established baseline magnitude and dispersion 
for consensus, integrity, and robustness indicators. Throughput and deadline adherence demonstrated 
moderate dispersion, indicating meaningful performance variability across workload and fault 
scenarios. Confirmation latency and recovery time displayed larger standard deviations relative to their 
means, reflecting right-skewed behavior and the presence of tail conditions under stress. Integrity-
related indicators (completeness, duplicates, and out-of-order confirmations) remained bounded 
within operationally interpretable ranges, enabling comparative evaluation across architectures. 
Robustness outcomes, including downtime probability and schedule deviation, showed sufficient 
spread to support inferential testing in subsequent stages. 
 

Table 2. Descriptive Comparison by Coordination Regime (N = 120 per regime) 
 

Metric Centralized Non-BFT Blockchain BFT Blockchain 

Transaction throughput (TPS), Mean (SD) 920.3 (120.6) 760.4 (140.9) 547.0 (110.2) 

Confirmation latency (seconds), Mean (SD) 1.12 (0.48) 2.70 (0.90) 4.71 (1.30) 

Deadline adherence rate (%), Mean (SD) 95.6 (3.9) 89.2 (6.1) 81.4 (7.3) 

Data completeness rate (%), Mean (SD) 96.1 (2.7) 97.2 (2.4) 99.1 (1.1) 

Downtime probability (%), Mean (SD) 5.20 (2.80) 4.90 (2.30) 2.80 (1.70) 

Schedule deviation (minutes), Mean (SD) 22.4 (11.3) 19.1 (10.0) 14.3 (8.1) 

Recovery time (minutes), Mean (SD) 49.0 (20.1) 43.2 (18.7) 31.3 (14.9) 

 
Table 2 compared architectures under identical sampling structure and showed distinct performance–
robustness profiles. Centralized coordination produced the highest throughput and lowest 
confirmation latency, indicating strong operational speed, while its downtime probability and 
recovery-time averages were comparatively higher under fault conditions, reflecting sensitivity to 
centralized disruption. Non-BFT blockchain coordination delivered intermediate performance but 
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showed less favorable robustness metrics than BFT in terms of downtime, schedule deviation, and 
recovery time. BFT-enabled orchestration exhibited lower throughput and higher confirmation latency 
but achieved the strongest integrity and robustness indicators, including reduced downtime 
probability, lower schedule deviation, and shorter recovery time averages. 
Correlation 
The correlation analysis examined bivariate associations among consensus performance, data integrity, 
and manufacturing robustness variables prior to multivariate modeling. Separate correlation matrices 
were first produced for each construct group and then consolidated to evaluate cross-construct 
relationships. Results showed coherent and theoretically consistent patterns across coordination 
regimes and scenario intensities. Transaction throughput was negatively associated with confirmation 
latency and recovery time, indicating that faster processing capacity coincided with reduced temporal 
disruption effects. Deadline adherence demonstrated a strong negative association with downtime 
probability and schedule deviation, suggesting that timing reliability functioned as a stabilizing 
operational mechanism. Sensor-to-ledger data integrity indicators, particularly data completeness and 
out-of-order confirmation rates, showed meaningful correlations with robustness outcomes, 
supporting their role as an intervening coordination mechanism. Architecture regime indicators were 
moderately correlated with both performance and robustness variables, providing an initial 
comparative signal while avoiding excessive overlap with outcome measures. Rank-based correlation 
estimates closely matched parametric coefficients, confirming that observed relationships were not 
artifacts of non-normal distributions. Overall, the correlation structure provided empirical support for 
proceeding with regression and mediation testing. 
 
Table 3. Correlation Matrix for Consensus Performance and Manufacturing Robustness Variables 

(N = 360) 
 

Variable Throughput Latency 
Deadline 
Adherence 

Downtime 
Probability 

Schedule 
Deviation 

Recovery 
Time 

Transaction 
throughput 

1.00 -0.68 0.59 -0.55 -0.47 -0.51 

Confirmation 
latency 

-0.68 1.00 -0.72 0.63 0.58 0.61 

Deadline 
adherence rate 

0.59 -0.72 1.00 -0.66 -0.62 -0.65 

Downtime 
probability 

-0.55 0.63 -0.66 1.00 0.71 0.74 

Schedule 
deviation 

-0.47 0.58 -0.62 0.71 1.00 0.69 

Recovery time -0.51 0.61 -0.65 0.74 0.69 1.00 

 
Table 3 showed strong and directionally consistent relationships between consensus performance and 
manufacturing robustness outcomes. Higher transaction throughput and deadline adherence were 
associated with lower downtime probability, reduced schedule deviation, and shorter recovery times. 
Confirmation latency exhibited positive correlations with all robustness degradation indicators, 
confirming that delayed consensus was aligned with increased operational instability. The magnitude 
of these associations indicated that consensus timing characteristics were closely linked to system-level 
robustness behavior, justifying their inclusion as key predictors in subsequent regression models. 
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Table 4. Correlations Between Data Integrity Metrics and Manufacturing Robustness Outcomes (N 
= 360) 

 

Variable 
Data 
Completeness 

Duplicate 
Event Rate 

Out-of-Order 
Confirmation 

Downtime 
Probability 

Schedule 
Deviation 

Recovery 
Time 

Data 
completeness 
rate 

1.00 -0.48 -0.56 -0.61 -0.58 -0.60 

Duplicate event 
rate 

-0.48 1.00 0.52 0.54 0.50 0.53 

Out-of-order 
confirmation 

-0.56 0.52 1.00 0.62 0.59 0.63 

Downtime 
probability 

-0.61 0.54 0.62 1.00 0.71 0.74 

Schedule 
deviation 

-0.58 0.50 0.59 0.71 1.00 0.69 

Recovery time -0.60 0.53 0.63 0.74 0.69 1.00 

 
Table 4 demonstrated that sensor-to-ledger data integrity metrics were strongly associated with 
manufacturing robustness outcomes. Higher data completeness correlated with lower downtime 
probability, reduced schedule deviation, and shorter recovery times, indicating that accurate and 
complete event recording supported operational stability. In contrast, higher duplicate and out-of-
order confirmation rates were positively correlated with robustness degradation indicators. These 
findings supported the conceptual role of data integrity as an intervening coordination mechanism 
linking consensus performance to manufacturing robustness, thereby motivating formal mediation 
analysis in subsequent regression models. 
Reliability and Validity 
Reliability and validity evidence was examined to confirm that the measurement framework produced 
stable, coherent, and empirically separable constructs suitable for inferential modeling. Replication 
stability was assessed using repeated runs under identical parameter settings, and results showed low-
to-moderate run-to-run dispersion for key metrics, indicating that estimates were not driven by 
stochastic noise alone. Internal consistency was evaluated for composite constructs representing data 
integrity quality and manufacturing robustness, and the indicators demonstrated strong coherence and 
acceptable inter-item covariance. Construct validity was supported through association patterns 
consistent with the conceptual structure, where stronger coordination performance and higher data 
integrity aligned with lower robustness degradation outcomes. Convergent validity was evidenced by 
strong indicator load alignment within each construct, while discriminant validity was supported by 
limited cross-construct redundancy between data integrity, consensus performance, and robustness 
indicators. Model-level validity checks showed stable measurement behavior across architecture 
classes and across workload and fault intensity strata, indicating that the measurement framework 
performed consistently under varied conditions. 
 

Table 5. Replication Stability for Key Metrics Under Identical Parameter Settings (N = 30) 
 

Metric Mean SD Coefficient of Variation (CV) Min Max 

Transaction throughput (TPS) 758.4 41.7 0.055 678.0 832.0 

Confirmation latency (seconds) 2.91 0.29 0.100 2.35 3.62 

Downtime probability (%) 4.12 0.62 0.150 2.90 5.70 

Schedule deviation (minutes) 17.9 2.6 0.145 12.8 23.9 

Recovery time (minutes) 40.6 4.9 0.121 31.0 52.0 
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Table 5 summarized replication stability for core performance and robustness metrics under identical 
parameter settings using repeated runs. The coefficient of variation values indicated that throughput 
and confirmation latency were highly stable across replications, supporting dependable measurement 
for performance benchmarking. Robustness outcomes such as downtime probability, schedule 
deviation, and recovery time exhibited slightly higher dispersion, which was consistent with stochastic 
disturbance and recovery dynamics in cyber-physical networks. The observed ranges remained 
bounded and operationally interpretable, indicating that measurement behavior did not fluctuate 
erratically across repeated trials. Overall, the stability statistics supported the reliability of run-level 
measurement extraction and justified downstream inferential testing. 
 
Table 6. Internal Consistency and Construct Validity Evidence for Composite Constructs (N = 360) 

 

Construct Indicators Used 
Cronbach’s 
Alpha 

Composite 
Reliability 

AVE 
Max Shared 
Variance 
(MSV) 

Data Integrity 
Quality 

completeness, duplicates (rev.), 
out-of-order (rev.), 
inconsistency detection (rev.) 

0.86 0.88 0.65 0.42 

Consensus 
Performance 

throughput, latency (rev.), 
finality stability, deadline 
adherence 

0.89 0.91 0.69 0.47 

Manufacturing 
Robustness 

downtime (rev.), schedule 
deviation (rev.), recovery time 
(rev.), throughput stability 

0.84 0.87 0.62 0.45 

 
Table 6 reported internal consistency and construct validity evidence for the multi-indicator constructs 
used in the measurement framework. Cronbach’s alpha and composite reliability values exceeded 
commonly accepted thresholds, indicating that indicators cohered well within each construct and 
produced stable composite measures. Average variance extracted values showed that each construct 
captured substantial variance from its indicators, supporting convergent validity. The maximum 
shared variance values were lower than the AVE values for each construct, indicating adequate 
discriminant validity and confirming that the constructs were empirically distinguishable rather than 
redundant. This evidence supported the suitability of the constructs for hypothesis testing, mediation 
analysis, and comparative modeling across architectures. 
Collinearity 
Collinearity diagnostics were conducted before regression estimation to confirm that overlap among 
predictors did not inflate standard errors or distort coefficient interpretation. The evaluation covered 
coordination regime indicators, BFT configuration parameters, workload intensity measures, network 
topology controls, and consensus performance predictors. The results indicated that the majority of 
predictors remained within acceptable collinearity limits, supporting stable multivariate estimation. 
Moderate overlap was observed between throughput and latency-related indicators, which was 
consistent with their shared dependence on consensus workload and communication conditions. In 
addition, topology density showed moderate association with latency behavior, reflecting the influence 
of connectivity on message propagation and validation processes. Corrective adjustments were applied 
where necessary to maintain interpretability of the final models. Closely related consensus indicators 
were consolidated into a standardized consensus performance index for models requiring parsimony, 
and all continuous predictors included in interaction terms were mean-centered to reduce non-essential 
collinearity. Following these procedures, the retained predictor set demonstrated satisfactory tolerance 
and variance inflation statistics, and regression models were estimated without evidence of unstable 
coefficients or sign reversals attributable to multicollinearity. 
 



Journal of Sustainable Development and Policy, September 2023, 34-72 

61 
 

Table 7. Collinearity Diagnostics for Candidate Predictors Prior to Final Model Specification 
 

Predictor Tolerance VIF Condition Index (CI) 

Regime: Centralized (dummy) 0.78 1.28 9.6 

Regime: Non-BFT blockchain (dummy) 0.76 1.32 10.1 

Regime: BFT blockchain (dummy) 0.74 1.35 10.4 

BFT fault threshold setting 0.69 1.45 11.2 

Fault intensity index 0.66 1.52 12.0 

Workload intensity (event rate level) 0.63 1.59 12.7 

Network size (node count) 0.71 1.41 10.9 

Network density 0.58 1.72 13.8 

Throughput (TPS) 0.42 2.38 18.9 

Confirmation latency (seconds) 0.39 2.56 19.7 

Deadline adherence rate (%) 0.46 2.17 17.3 

Transaction complexity class 0.77 1.30 9.8 

 
Table 7 presented tolerance, variance inflation factors, and condition indices for the candidate 
predictors included in the initial model set. The architecture regime indicators, BFT settings, workload 
and fault measures, and topology controls remained within low-to-moderate collinearity ranges, 
indicating that these predictors contributed distinct information to regression models. The highest 
overlap emerged among consensus performance variables, particularly throughput and confirmation 
latency, which exhibited moderate VIF values consistent with their interconnected operational 
behavior. Condition indices remained below levels typically associated with severe multicollinearity, 
supporting stable coefficient estimation. These diagnostics justified proceeding with multivariate 
modeling while applying targeted refinements to the consensus predictor set. 
 

Table 8. Post-Correction Collinearity Diagnostics for Final Regression Predictor Set  
 

Predictor (Final Model) Tolerance VIF Condition Index (CI) 

Regime indicators (set of dummies) 0.75 1.34 10.3 

BFT fault threshold setting 0.70 1.43 11.1 

Fault intensity index 0.67 1.49 11.9 

Workload intensity (centered) 0.64 1.56 12.6 

Network size (centered) 0.72 1.39 10.8 

Network density (centered) 0.60 1.67 13.5 

Consensus performance index (standardized composite) 0.55 1.82 14.6 

Transaction complexity class 0.78 1.28 9.7 

 
Table 8 reported collinearity statistics after corrective procedures were applied to improve model 
interpretability and estimation stability. Centering continuous predictors reduced non-essential 
collinearity in models involving interaction terms, while consolidating throughput, latency, and 
deadline adherence into a standardized consensus performance index reduced redundancy among 
closely related predictors. Post-correction VIF values decreased for the consensus-related predictor set 
and remained within acceptable limits across all predictors. Condition indices stayed well below 
thresholds associated with unstable regression solutions. These results confirmed that the final 
regression specification was not adversely affected by multicollinearity and supported meaningful 
hypothesis testing with interpretable coefficients and reliable uncertainty estimation. 
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Regression and Hypothesis Testing 
The regression analysis evaluated the hypothesized relationships among coordination regime, 
Byzantine fault tolerance configuration, consensus performance, data integrity, and manufacturing 
robustness using hierarchical and comparative modeling. Baseline models demonstrated that 
coordination regime and BFT configuration were significantly associated with robustness outcomes 
after controlling for network size, topology density, transaction complexity, demand variability, and 
disruption scenario type. Expanded models incorporating consensus performance and data integrity 
metrics showed substantial increases in explained variance, indicating that coordination effects 
operated partly through performance and integrity mechanisms rather than architecture alone. 
Interaction terms revealed that the robustness benefits of BFT-enabled orchestration strengthened 
under higher workload intensity and elevated fault conditions, while centralized coordination 
performance deteriorated more rapidly under stress. Mediation analysis confirmed that data integrity 
quality partially explained the relationship between coordination regime and robustness outcomes. For 
time-dependent robustness measures, repeated-measures regression results indicated stable within-
run trajectories and statistically significant differences in recovery and schedule deviation dynamics 
across architectures. Collectively, the regression results supported the hypothesized causal structure 
and demonstrated that manufacturing robustness was shaped by both architectural design and 
operational coordination quality. 
 

Table 9. Hierarchical Regression Results Predicting Manufacturing Robustness Index 
 

Predictor Model 1 β Model 2 β Model 3 β 

Centralized regime (ref.) — — — 

Non-BFT blockchain regime -0.18*** -0.09* -0.05 

BFT blockchain regime -0.26*** -0.14** -0.08* 

BFT fault threshold setting -0.21*** -0.12** -0.07* 

Consensus performance index — -0.41*** -0.29*** 

Data integrity quality index — — -0.34*** 

Workload intensity 0.24*** 0.18*** 0.15** 

Fault intensity 0.29*** 0.22*** 0.19*** 

Network size 0.07 0.05 0.04 

Network density 0.09* 0.06 0.05 

Adjusted R² 0.31 0.52 0.63 

*p < .05, **p < .01, ***p < .001 
 
Table 9 showed that coordination regime and BFT configuration exerted significant direct effects on 
manufacturing robustness in the baseline model. The inclusion of consensus performance substantially 
reduced the magnitude of architecture coefficients, indicating that performance dynamics accounted 
for a meaningful share of robustness variation. When data integrity quality was added, the effects of 
regime indicators were further attenuated but remained statistically significant for BFT-enabled 
orchestration, supporting partial mediation. The steady increase in adjusted R² across models 
demonstrated improved explanatory power. Consensus performance and data integrity emerged as 
the strongest predictors, confirming that operational coordination quality played a central role in 
shaping robustness outcomes beyond architectural classification alone. 
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Table 10. Interaction and Mediation Effects on Robustness Outcomes 
 

Effect Coefficient SE 95% CI 

BFT regime × Workload intensity -0.11** 0.04 [-0.19, -0.04] 

BFT regime × Fault intensity -0.14*** 0.05 [-0.24, -0.06] 

Indirect effect via consensus performance -0.12*** 0.03 [-0.19, -0.07] 

Indirect effect via data integrity -0.09** 0.03 [-0.16, -0.04] 

Total mediated effect -0.21*** 0.04 [-0.29, -0.14] 

 
Table 10 reported interaction and mediation results that clarified how coordination architecture 
influenced robustness under varying operational stress. The negative interaction coefficients indicated 
that BFT-enabled orchestration mitigated robustness degradation as workload and fault intensity 
increased, while other architectures showed weaker stress absorption. Mediation estimates 
demonstrated that both consensus performance and data integrity transmitted a significant portion of 
the architecture effect on robustness, with the combined indirect effect accounting for a substantial 
share of the total impact. Confidence intervals excluded zero for all indirect paths, confirming statistical 
significance. These findings supported hypotheses proposing mechanism-based robustness 
improvements rather than purely structural effects. 
DISCUSSION 
This study demonstrated that coordination architecture exerted a statistically meaningful influence on 
manufacturing robustness outcomes across cyber-physical supply chain networks. In particular, BFT-
enabled blockchain orchestration was associated with lower downtime probability, reduced schedule 
deviation, and faster recovery dynamics when compared with centralized and non-BFT blockchain 
coordination regimes (Masure et al., 2019). These findings align with earlier empirical and simulation-
based studies that have reported increased vulnerability of centralized coordination systems to 
disruption propagation and single-point failure. However, this study extended prior work by 
quantifying robustness effects under systematically varied workload and fault conditions, thereby 
offering a more granular view of how coordination structure interacts with operational stress. Unlike 
studies that focused primarily on performance metrics such as throughput or latency in isolation, this 
study treated robustness as a multidimensional dependent construct, capturing both immediate 
disruption effects and temporal recovery behavior. The observed attenuation of robustness 
degradation under BFT-enabled orchestration is consistent with earlier arguments that distributed trust 
and fault tolerance enhance system-level stability. At the same time, this study diverged from prior 
findings that suggested blockchain coordination uniformly degrades operational performance, 
showing instead that performance trade-offs were context-dependent and mediated by integrity and 
synchronization quality (Brutschin, 2017). The comparative results suggest that architecture alone does 
not determine robustness; rather, robustness emerges from the interaction between coordination 
structure, consensus behavior, and data integrity mechanisms. This interpretation reinforces and 
refines earlier conceptual models by providing empirical evidence that robustness advantages 
associated with blockchain-based coordination become more pronounced under elevated fault 
intensity and workload stress, conditions that are often underrepresented in prior analyses (Hashem et 
al., 2015). 
Consensus performance indicators, including throughput stability, confirmation latency behavior, and 
deadline adherence, were found to explain a substantial portion of the variance in manufacturing 
robustness outcomes. This study showed that once consensus performance was introduced into 
regression models, the direct effects of coordination regime were partially reduced, indicating that 
architectural differences manifested through operational performance channels. This pattern is 
consistent with earlier studies that identified consensus delay and throughput bottlenecks as key 
determinants of system responsiveness (Kinder, 2014). However, this study advanced the literature by 
demonstrating that consensus performance was not merely a technical efficiency concern but a 
robustness-relevant mechanism with direct operational consequences. Prior research frequently treated 
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consensus metrics as engineering benchmarks disconnected from manufacturing outcomes. In contrast, 
the present findings linked consensus timing characteristics directly to downtime probability, recovery 
duration, and schedule deviation. The negative association between deadline adherence and 
robustness degradation highlighted the importance of temporal reliability rather than raw speed alone. 
Earlier studies that emphasized average latency values without accounting for variability and tail 
behavior may therefore have underestimated the robustness implications of consensus instability 
(Williamson, 2016). By analyzing distributional properties and stress-sensitive behavior, this study 
provided a more nuanced interpretation that bridges systems engineering and operations management 
perspectives. The results support earlier theoretical claims that consensus mechanisms shape 
coordination quality, while also clarifying that their impact on robustness is mediated through 
predictability and synchronization rather than throughput maximization alone (Jin et al., 2019). 
Data integrity quality emerged as a statistically significant intervening mechanism linking coordination 
architecture and manufacturing robustness. This study demonstrated that higher sensor-to-ledger data 
completeness and lower rates of duplication and out-of-order confirmation were associated with 
reduced downtime probability, smaller schedule deviations, and faster recovery. These findings are 
consistent with earlier studies that emphasized the importance of trusted data sharing for supply chain 
coordination, particularly in distributed and multi-organization environments (Hang & Kim, 2019). 
However, this study contributed new empirical clarity by quantifying integrity effects alongside 
consensus performance within a unified analytical framework. Prior research often examined data 
integrity as a qualitative benefit of blockchain adoption or as a compliance-related feature rather than 
as a measurable operational driver. The mediation results indicated that integrity accounted for a 
meaningful share of the robustness advantage observed under BFT-enabled orchestration, confirming 
that fault tolerance mechanisms influence outcomes not only by preventing incorrect consensus but 
also by preserving the quality of recorded operational data. This interpretation aligns with earlier 
conceptual work that framed blockchain as a trust infrastructure but extends it by demonstrating 
statistically how integrity translates into robustness (Pham & Tran, 2020). The findings suggest that 
robustness gains are unlikely to materialize in blockchain-based systems if data integrity is 
compromised at the cyber-physical interface, even when consensus mechanisms function correctly. 
This perspective reconciles mixed findings in earlier empirical studies by highlighting integrity as a 
necessary but not automatic outcome of blockchain orchestration (FitzPatrick, 2019). 
The interaction analysis revealed that the robustness advantages of BFT-enabled orchestration 
intensified under higher workload intensity and elevated fault conditions. This study found that while 
centralized coordination exhibited strong baseline performance, its robustness deteriorated more 
sharply as stress increased (Kenworthy et al., 2014). These results align with earlier resilience studies 
that documented nonlinear degradation patterns in centralized and tightly coupled systems. However, 
the present findings extend this literature by showing that BFT-enabled architectures absorbed stress 
more effectively, exhibiting flatter degradation slopes across workload and fault gradients. Earlier 
studies often evaluated architectures under average or nominal conditions, potentially masking 
differential stress behavior. By explicitly modeling interactions, this study demonstrated that 
architectural benefits are contingent rather than uniform. The results also help explain inconsistencies 
in prior evaluations of blockchain-based supply chain systems, where performance penalties were 
observed without corresponding robustness benefits (Owens et al., 2014). The findings indicate that 
robustness benefits become observable primarily under adverse conditions, suggesting that evaluation 
frameworks focused solely on nominal performance may misrepresent system value. This stress-
contingent interpretation aligns with earlier resilience theory while providing empirical validation in a 
cyber-physical supply chain context. The interaction findings reinforce the argument that robustness 
should be evaluated dynamically rather than through static benchmarks (Azaria et al., 2016). 
Recovery-time modeling revealed systematic differences in how coordination regimes influenced 
temporal robustness following disruption. This study found that BFT-enabled orchestration was 
associated with shorter and more predictable recovery trajectories, whereas centralized coordination 
exhibited longer and more variable recovery patterns under comparable conditions. These findings are 
consistent with earlier research that identified distributed coordination and redundancy as enablers of 
faster system recovery (Harold & Holtz, 2015).  
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Figure 12: Blockchain Coordination and Robustness Framework 

 
However, this study extended prior work by linking recovery dynamics explicitly to consensus stability 
and data integrity rather than to structural redundancy alone. Earlier studies frequently attributed 
recovery performance to inventory buffers or supplier diversification, whereas the present findings 
highlight informational coordination as a critical recovery driver. The repeated-measures analysis 
showed that recovery behavior evolved differently over time across architectures, underscoring the 
importance of temporal modeling in robustness assessment. This temporal perspective clarifies why 
some prior studies reported limited resilience benefits from digital coordination initiatives: without 
stable confirmation and integrity mechanisms, digital visibility alone may not accelerate recovery (Van 
Wingerden et al., 2017). The findings thus refine earlier conclusions by positioning recovery as a 
function of coordinated decision reliability rather than as a purely physical or logistical phenomenon. 
The multi-echelon robustness indicators revealed that coordination architecture influenced not only 
focal manufacturing performance but also downstream service stability and inventory behavior. This 
study found that BFT-enabled orchestration reduced service level variance and dampened inventory 
oscillations across supply chain layers. These findings are consistent with earlier studies that 
documented the amplification of variability in poorly synchronized supply chains (Shahnaz et al., 
2019). However, this study advanced the literature by demonstrating that shared, verifiable data 
environments moderated these amplification effects. Earlier work often attributed oscillation reduction 
to demand smoothing or forecasting improvements, whereas the present findings suggest that 
confirmation reliability and integrity preservation play equally important roles. The results imply that 
robustness benefits propagate across echelons when coordination mechanisms maintain consistent 
system state awareness. This interpretation helps reconcile earlier mixed evidence regarding digital 
coordination investments by showing that benefits depend on how deeply coordination mechanisms 
are integrated into decision processes across tiers. The findings reinforce the view that robustness is an 
emergent property of networked coordination rather than a localized operational attribute (Rault et al., 
2014). 
Overall, the discussion situates this study’s findings within and beyond earlier research on blockchain-
enabled supply chains, cyber-physical systems, and manufacturing resilience (Langer et al., 2017). The 
results corroborate prior theoretical claims regarding the value of distributed trust and fault tolerance 
while providing quantitative evidence that clarifies when and how these mechanisms improve 
robustness. Unlike studies that framed blockchain adoption as a binary technological shift, this study 
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demonstrated that robustness outcomes depend on measurable performance and integrity pathways 
(Chambers & Norton, 2016). By integrating consensus performance, data integrity, and robustness 
within a single analytical framework, the findings address fragmentation in the existing literature. The 
comparative and interaction-based results refine earlier conclusions by emphasizing context sensitivity, 
particularly under operational stress. The study contributes to theory by repositioning blockchain 
orchestration from a transactional innovation to a coordination reliability mechanism with quantifiable 
manufacturing consequences. This synthesis advances understanding of how cyber-physical supply 
chain networks behave under uncertainty and how architectural design choices shape robustness 
outcomes in measurable ways (Choi & Ji, 2015). 
CONCLUSION 
This study concluded with a quantitative synthesis of how blockchain orchestration and Byzantine fault 
tolerance were associated with manufacturing robustness in cyber-physical supply chain networks 
under systematically varied workload and fault conditions. The results demonstrated that coordination 
architecture was a significant determinant of robustness outcomes, with BFT-enabled blockchain 
orchestration exhibiting lower downtime probability, reduced schedule deviation, and shorter 
recovery-time behavior relative to centralized and non-BFT coordination regimes when evaluated 
under comparable scenarios. The inferential models further showed that consensus performance and 
sensor-to-ledger data integrity functioned as central explanatory mechanisms, evidenced by the 
reduction of direct architecture effects after introducing throughput stability, confirmation latency 
behavior, deadline adherence, and integrity-quality indicators into expanded specifications. Interaction 
estimates indicated that robustness advantages for BFT-enabled orchestration strengthened under 
elevated workload intensity and higher fault exposure, highlighting that architecture-dependent 
differences were most visible when systems operated under stress profiles that intensified timing 
variability, synchronization drift, and data-quality degradation. Mediation results reinforced this 
mechanism-driven interpretation by showing that integrity and performance pathways accounted for 
a substantial portion of the total effect linking orchestration regime to robustness outcomes, thereby 
clarifying why blockchain coordination produced distinct operational profiles across regimes rather 
than uniform gains. Time-dependent analyses supported the conclusion that recovery dynamics 
differed systematically by coordination design, with more predictable stabilization patterns occurring 
when confirmation processes and integrity preservation reduced divergence between physical events 
and ledger-confirmed states. Multi-echelon indicators further showed that robustness effects extended 
beyond focal production performance into service stability and inventory behavior across network 
layers, consistent with the characterization of robustness as an emergent property of interconnected 
coordination rather than a localized operational attribute. Overall, the findings established that 
manufacturing robustness in distributed cyber-physical supply chains was shaped by the combined 
influence of coordination structure, consensus timing behavior, and end-to-end data integrity quality, 
providing a quantitatively grounded basis for evaluating orchestration regimes through measurable 
robustness outcomes and statistically interpretable mechanisms. 
RECOMMENDATIONS 
Recommendations for this study were structured to align directly with the measured findings on 
coordination architecture, consensus performance, data integrity, and manufacturing robustness in 
cyber-physical supply chain networks. First, implementation decisions were recommended to be 
anchored in a workload-and-fault profile assessment rather than average-condition benchmarking, 
because robustness advantages for BFT-enabled orchestration were most pronounced under elevated 
operational stress; therefore, deployment evaluation was recommended to include stress scenarios that 
mirror peak event rates, communication impairment, and validator fault exposure. Second, consensus 
configuration was recommended to be treated as a performance-governance control variable, with 
explicit service-level targets defined for confirmation latency distributions, deadline adherence, and 
tail-risk behavior, since timing predictability was more strongly linked to robustness than nominal 
speed alone; operational thresholds for acceptable confirmation delays were recommended to be 
matched to manufacturing control and scheduling windows. Third, sensor-to-ledger integrity controls 
were recommended to be strengthened at the cyber-physical interface because integrity quality 
statistically explained a meaningful portion of robustness behavior; validation pipelines were 



Journal of Sustainable Development and Policy, September 2023, 34-72 

67 
 

recommended to include duplicate suppression, sequence validation, timestamp normalization, and 
anomaly screening so that erroneous events were filtered before immutable recording. Fourth, 
architectural selection was recommended to follow a comparative evaluation logic that distinguishes 
coordination speed from robustness stability; centralized coordination was recommended only where 
fault exposure is low and single-point disruption risk is acceptable, while BFT-enabled orchestration 
was recommended where multi-party governance, adversarial exposure, and cross-border 
coordination raise trust and continuity requirements. Fifth, monitoring and assurance practices were 
recommended to use integrated dashboards combining consensus metrics, integrity metrics, and 
robustness indicators, enabling early detection of coordination degradation through rising out-of-order 
confirmations, declining deadline adherence, and increasing latency variance. Sixth, multi-echelon 
coordination policies were recommended to standardize event definitions and measurement intervals 
across partners to reduce synchronization drift and inventory oscillations, since multi-tier stability 
depended on consistent system-state awareness. Seventh, future empirical replication within 
operational testbeds was recommended using the same measurement framework to validate the stress-
contingent relationships observed in the scenario-based design, ensuring that robustness effects 
generalize across diverse manufacturing sectors and network topologies. 
LIMITATION 
This study’s limitations were primarily associated with the modeling scope, measurement conditions, 
and generalizability boundaries inherent to a controlled, scenario-based quantitative design. First, the 
empirical basis relied on simulated network-run executions and structured system logs generated 
under parameterized workload and fault conditions; although this approach supported comparability 
and replication stability, it constrained external validity because real manufacturing ecosystems 
contain organizational behaviors, contractual frictions, and unobserved operational constraints that are 
difficult to reproduce fully in a model-driven environment. Second, the representation of cyber-
physical event generation depended on assumptions about sensor behavior, timestamping, and event 
semantics; even when error patterns were parameterized, the diversity of industrial sensing 
technologies and site-specific calibration practices limited the ability to claim that all sensor-to-ledger 
integrity dynamics were captured comprehensively. Third, the coordination architectures were 
evaluated under standardized governance assumptions, while real consortium networks differ 
substantially in node trust relationships, onboarding policies, and operational compliance rules; such 
governance heterogeneity can alter validator participation behavior and influence both consensus 
performance and integrity outcomes. Fourth, the study treated robustness as a measurable dependent 
construct using downtime probability, schedule deviation, throughput stability, recovery-time 
behavior, service variance, and inventory oscillation indicators; while these metrics are common in 
quantitative operations research, they do not capture all dimensions of robustness such as product 
quality outcomes, workforce availability constraints, or financial risk impacts that may be critical in 
certain manufacturing sectors. Fifth, the statistical models summarized relationships at the network-
run level, which supported inferential clarity but limited micro-level interpretation of individual node 
behaviors, localized disruption effects, and tier-specific dynamics that may require finer-grained 
modeling. Sixth, consensus performance and integrity metrics were operationalized through log-
derived indicators that reflect system-state behavior, yet measurement error may still exist due to event 
aggregation choices, window definitions, and the transformation pipeline used to compute composite 
indices.  
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