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Abstract

This quantitative study examined deep-learning architectures for predicting cardiovascular outcomes using
high-dimensional medical imaging data within a retrospective, multi-center observational cohort framework.
Imaging examinations were treated as baseline predictors, and clinically documented cardiovascular events
were operationalized as outcome labels using predefined event windows and censoring logic. The unit of
analysis was the individual patient, and one index imaging examination was retained per patient to ensure
independence of observations. The final analytic sample included 1,248 patients drawn consecutively from
four clinical sites, with a mean age of 57.6 years (SD = 12.9) and 56.7% male representation (n = 708).
Imaging modalities included cardiac MRI (51.0%), CT/CT angiography (26.0%), and cine echocardiography
(23.1%). Composite constructs were derived to represent structural imaging risk, functional imaging
dynamics, tissue characterization, and clinical risk covariates, with all constructs standardized prior to
modeling. Reliability analysis demonstrated satisfactory internal consistency across constructs, with final
Cronbach’s alpha values ranging from 0.80 to 0.88. Regression analyses were conducted using stepwise
specifications, beginning with clinical controls and expanding to imaging constructs and an integrated
imaging-clinical score. Structural imaging risk (f = 0.287, p <.001), functional imaging dynamics (f = 0.214,
p = .001), and tissue characterization (f = 0.246, p < .001) were each significantly associated with
cardiovascular event occurrence. The integrated imaging—clinical score produced the strongest adjusted
association (f = 0.521, 95% CI [0.407, 0.635], p < .001) and yielded the best model fit (AIC reduced from
914.7 to 889.2; pseudo R? increased from 0.167 to 0.193). Model diagnostics indicated acceptable
multicollinearity (max VIF = 2.18) and adequate calibration (calibration slope = 0.97; intercept = 0.03).
Holdout performance demonstrated strong discrimination (AUC = 0.82) and low probabilistic error (Brier
score = 0.098), with specificity of 0.90 and sensitivity of 0.63 at a 0.50 threshold. Robustness checks, including
bootstrap resampling and subgroup stratification, produced consistent estimates. Ouverall, the findings
indicated that multi-domain imaging constructs significantly predicted cardiovascular outcomes, and
integrated imaging—clinical modeling provided the strongest and most stable predictive evidence.
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INTRODUCTION

Deep learning represents a specialized subfield of machine learning characterized by multilayered
artificial neural networks capable of hierarchical feature extraction and nonlinear pattern
representation from large-scale data. Within the context of medical imaging, deep-learning
architectures are designed to process high-dimensional pixel or voxel data derived from modalities
such as magnetic resonance imaging, computed tomography, echocardiography, and positron emission
tomography (Suzuki, 2017). These architectures, including convolutional neural networks,
autoencoders, and hybrid encoder-decoder models, are mathematically structured to learn spatial,
temporal, and contextual representations without reliance on handcrafted features. High-dimensional
medical imaging data refers to datasets with a large number of variables per observation, often
exceeding traditional statistical thresholds, where each image may contain millions of correlated data
points. Cardiovascular outcome prediction involves the quantitative estimation of clinical endpoints
such as myocardial infarction, heart failure progression, arrhythmia occurrence, stroke, and
cardiovascular mortality using measurable predictors extracted from imaging and clinical data. The
integration of deep learning into cardiovascular imaging analytics arises from the limitations of
classical regression-based and rule-driven diagnostic approaches, which struggle to manage nonlinear
dependencies and multicollinearity inherent in complex imaging datasets (Razzak et al., 2017).

Figure 1: Deep Learning for Cardiovascular Prediction
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Quantitative cardiovascular research increasingly frames outcome prediction as a supervised learning
problem in which labeled imaging datasets are mapped to probabilistic risk estimates. Internationally,
cardiovascular disease remains the leading cause of mortality, accounting for approximately one-third
of global deaths, with significant heterogeneity across income regions and healthcare systems. Imaging-
based risk stratification has therefore become central to population-level screening and individualized
clinical decision-making. Deep-learning models enable the simultaneous analysis of anatomical
structure, tissue characteristics, and functional parameters within a unified computational framework,
offering a mathematically scalable solution to high-dimensional inference problems (Currie et al., 2019).
This foundational alignment between deep learning theory and medical imaging data structures
establishes the analytical basis for quantitative cardiovascular outcome modeling.

Cardiovascular phenotyping through medical imaging generates exceptionally high-dimensional data
that capture structural, functional, and compositional attributes of the heart and vascular system.
Advanced imaging modalities produce multidimensional representations encompassing spatial
resolution, temporal dynamics, tissue contrast, and physiological motion, each contributing to a dense
feature space. For example, cardiac magnetic resonance imaging can encode myocardial strain,
perfusion, fibrosis, and ventricular geometry across multiple phases of the cardiac cycle, resulting in
thousands of correlated measurements per patient (Sahiner et al., 2019). Traditional statistical models
require dimensionality reduction techniques or manual feature selection to operate within such
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environments, often sacrificing predictive granularity. Deep-learning architectures address this
challenge through automated feature learning, enabling latent representation discovery without
explicit dimensional constraints. From a quantitative perspective, cardiovascular outcome prediction
using imaging data involves mapping these learned representations to outcome variables using loss
optimization functions such as cross-entropy or mean squared error. Internationally, the burden of
cardiovascular disease exhibits substantial variation across populations due to demographic, genetic,
environmental, and socioeconomic factors, increasing the need for adaptable predictive models that
generalize across imaging protocols and clinical contexts (Serte et al., 2022). Large-scale imaging
cohorts such as the UK Biobank, Multi-Ethnic Study of Atherosclerosis, and international hospital
registries have accelerated the availability of labeled high-dimensional datasets suitable for deep-
learning analysis. These datasets enable statistical power for training complex architectures while
supporting external validation across diverse populations. Quantitative imaging biomarkers derived
through deep learning have demonstrated associations with subclinical disease progression and
adverse cardiovascular outcomes beyond conventional risk scores. The capacity of deep-learning
systems to integrate spatial and temporal dependencies positions them as mathematically robust tools
for extracting prognostic information embedded within high-dimensional cardiovascular imaging data
(Greenspan et al., 2016).

Deep-learning architectures applied to cardiovascular imaging encompass a range of network designs
optimized for spatial, volumetric, and temporal data processing. Convolutional neural networks
dominate image-based prediction tasks due to their capacity for translational invariance and parameter
sharing, which reduces computational complexity while preserving feature sensitivity. Three-
dimensional convolutional networks extend this framework to volumetric imaging, enabling voxel-
level analysis of cardiac structures (Singh et al., 2020). Recurrent neural networks and long short-term
memory units are frequently integrated to model temporal sequences in cine imaging and dynamic
perfusion studies. Hybrid architectures combine convolutional and recurrent components to capture
both spatial morphology and temporal cardiac motion. Quantitatively, these architectures function as
nonlinear estimators mapping imaging tensors to outcome probabilities, often trained using stochastic
gradient descent and regularization strategies to mitigate overfitting. Model performance is evaluated
using statistical metrics such as area under the receiver operating characteristic curve, sensitivity,
specificity, and calibration indices (Lundervold & Lundervold, 2019). International studies have
demonstrated that deep-learning models trained on imaging data outperform traditional risk
stratification tools in predicting cardiovascular mortality, atrial fibrillation, and heart failure events
across multi-center datasets. The scalability of deep-learning architectures allows adaptation to
heterogeneous imaging resolutions and acquisition protocols encountered in global healthcare settings.
Quantitative research emphasizes reproducibility and generalization, leading to increased use of cross-
validation, external testing cohorts, and explainability techniques such as saliency mapping and
activation visualization. These methodological refinements reinforce the statistical credibility of deep-
learning-based cardiovascular outcome prediction while maintaining compatibility with high-
dimensional imaging data (Lundervold & Lundervold, 2019).

From a quantitative methodological perspective, deep-learning-based cardiovascular outcome
prediction is grounded in statistical learning theory, which formalizes the relationship between model
complexity, sample size, and generalization error. High-dimensional imaging data present a classic
p>n problem, where the number of predictors vastly exceeds the number of observations, challenging
conventional inference frameworks (Suganyadevi et al.,, 2022). Deep-learning models implicitly
perform regularization through architectural constraints, weight sharing, dropout mechanisms, and
optimization dynamics. Loss functions operationalize outcome prediction as a probabilistic estimation
task, allowing models to quantify uncertainty and risk distributions. International cardiovascular
imaging studies increasingly adopt rigorous statistical validation frameworks, incorporating
bootstrapping, stratified sampling, and harmonization protocols to address dataset heterogeneity
(Suganyadevi et al., 2022). Quantitative benchmarking against established clinical risk models such as
the Framingham Risk Score highlights the incremental predictive value of imaging-derived deep-
learning features. Model interpretability remains a statistical consideration, with techniques such as
gradient-weighted class activation mapping and feature attribution enabling post hoc examination of
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learned representations. These methods facilitate quantitative assessment of model behavior while
preserving predictive performance. The integration of deep learning within cardiovascular outcome
modeling reflects a shift toward data-driven inference systems capable of operating within complex,
high-dimensional statistical spaces (Maier et al., 2019).

Figure 2: Deep Learning Cardiovascular Outcome Prediction
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Cardiovascular disease constitutes a major global public health challenge, with disproportionate
impacts across low-, middle-, and high-income regions. Variations in healthcare infrastructure, imaging
accessibility, and population risk profiles necessitate predictive models that accommodate
international diversity. Medical imaging plays a central role in cardiovascular diagnosis and prognosis,
serving as a noninvasive window into structural and functional pathology (Chen et al., 2022).
Quantitative imaging analysis using deep-learning architectures offers a standardized analytical
approach capable of transcending geographic and institutional variability. Large international
consortia have demonstrated the feasibility of deploying deep-learning models across multinational
datasets while maintaining statistical robustness. Imaging-derived predictors have shown associations
with incident cardiovascular events independent of demographic and clinical covariates. The
scalability of deep-learning systems enables application in both resource-rich tertiary centers and
emerging healthcare systems adopting digital imaging technologies. Quantitative outcome prediction
using high-dimensional imaging data aligns with global health objectives aimed at early detection and
risk stratification (Aggarwal et al., 2021). The convergence of international imaging initiatives and
advanced computational methods underscores the relevance of deep-learning architectures in
addressing the worldwide cardiovascular disease burden.

Quantitative cardiovascular outcome prediction increasingly relies on the integration of imaging data
with complementary clinical variables, including demographics, laboratory measurements, and
electronic health record information. Deep-learning architectures facilitate multimodal data fusion
through parallel network branches and shared latent representations. High-dimensional imaging
features are embedded alongside structured clinical data to enhance predictive accuracy. This
integrative modeling approach reflects a quantitative shift toward holistic risk estimation frameworks
(Haskins et al., 2020). Statistical evaluation of multimodal models demonstrates improved
discrimination and calibration relative to unimodal imaging-only approaches. International datasets
support the generalizability of integrated models across diverse patient populations. The mathematical
flexibility of deep-learning architectures allows continuous model refinement as additional data
sources are incorporated. Quantitative research emphasizes transparent reporting of model
architecture, training parameters, and evaluation metrics to ensure reproducibility (Zhou et al., 2019).
These practices reinforce the methodological rigor of deep-learning-based cardiovascular outcome
prediction.
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The application of deep-learning architectures to cardiovascular imaging represents a convergence of
quantitative research paradigms spanning computer science, biostatistics, and clinical medicine.
Imaging-based outcome prediction is operationalized through hypothesis-driven model construction,
statistical validation, and performance benchmarking (Giger, 2018). High-dimensional data
environments necessitate computationally efficient learning algorithms capable of extracting clinically
meaningful signal from noise. International research standards increasingly emphasize open datasets,
standardized evaluation protocols, and cross-site validation. Quantitative studies contribute to the
growing evidence base supporting deep-learning methodologies as statistically viable tools for
cardiovascular outcome prediction. The synthesis of mathematical modeling, imaging science, and
epidemiological data positions deep learning as a central analytical framework within contemporary
cardiovascular research (Gibson et al., 2018).

The present quantitative study is designed with a set of clearly operationalized objectives centered on
evaluating deep-learning architectures for predicting cardiovascular outcomes from high-dimensional
medical imaging data. First, the study aims to construct a robust, reproducible analytical pipeline that
converts raw imaging inputs (such as cardiac MRI, CT angiography, or echocardiographic sequences,
depending on the dataset) into standardized model-ready tensors through harmonized preprocessing,
quality control, and normalization procedures, ensuring consistent representation across subjects and
imaging protocols. Second, the study seeks to develop and compare multiple deep-learning
architectures that are appropriate for different imaging structures, including two-dimensional
convolutional neural networks for slice-based images, three-dimensional convolutional networks for
volumetric scans, and temporal or hybrid architectures capable of capturing motion and phase
information in cine or time-series imaging. Third, the study aims to quantify predictive performance
for clinically meaningful cardiovascular endpoints—such as incident myocardial infarction, heart
failure hospitalization, major adverse cardiovascular events, arrhythmia occurrence, or cardiovascular
mortality —using predefined evaluation metrics including discrimination, calibration, and error-based
measures, computed under rigorous validation frameworks. Fourth, the study intends to test the
statistical stability and generalizability of model performance through cross-validation and external
holdout testing where available, while also assessing sensitivity to class imbalance and subgroup
variation using stratified analyses. Fifth, the study aims to examine the contribution of imaging-derived
latent representations relative to traditional clinical covariates by implementing comparative baselines
and integrated multimodal models, thereby measuring incremental predictive value in a controlled
quantitative setting. Sixth, the study seeks to characterize model reliability through uncertainty-aware
scoring or confidence estimation techniques and to document failure modes using systematic error
analysis, including false positive and false negative pattern inspection. Finally, the study aims to ensure
methodological transparency by reporting architecture specifications, training dynamics,
hyperparameter selection logic, and reproducibility details, enabling auditability and facilitating
quantitative comparison with prior imaging-based cardiovascular prediction studies.

LITERATURE REVIEW

The literature review for this quantitative study synthesizes empirical and methodological research on
deep-learning architectures used to predict cardiovascular outcomes from high-dimensional medical
imaging data. It is structured to support a model-comparison and performance-evaluation research
design by organizing prior studies around measurable elements that determine predictive accuracy,
generalizability, and statistical validity (Budd et al., 2021). Because cardiovascular imaging produces
complex, high-dimensional inputs, the reviewed scholarship is examined through a quantitative lens
that emphasizes dataset characteristics (sample size, class balance, imaging modality, endpoint
definition), model architecture choices (2D/3D CNNSs, temporal and hybrid networks, attention-based
models), training strategies (loss functions, regularization, augmentation), and evaluation practices
(cross-validation, external validation, calibration, discrimination metrics). The section also consolidates
evidence on how imaging-derived representations relate to clinical endpoints and how researchers
have operationalized outcome prediction tasks across heterogeneous populations and multi-center
settings (Ker et al., 2017). In addition, the literature review addresses reproducibility and measurement
reliability, including how harmonization, domain shift, and label noise influence reported
performance. By mapping these quantitative dimensions across prior work, the review establishes a
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structured basis for selecting architectures, defining outcome variables, and justifying statistical
evaluation methods used in the present study (Liu et al., 2021).

Cardiovascular Outcome Prediction

Quantitative cardiovascular outcome prediction is fundamentally structured as a supervised learning
task in which predefined clinical endpoints serve as target labels derived from longitudinal patient
data. Within the literature, cardiovascular outcomes are operationalized using standardized clinical
constructs that ensure comparability across studies and datasets. Major adverse cardiovascular events
(MACE) are frequently defined as composite endpoints incorporating myocardial infarction, stroke,
cardiovascular death, and, in some studies, coronary revascularization. Mortality outcomes are often
distinguished as all-cause or cardiovascular-specific, reflecting different modeling assumptions and
clinical interpretations (Zhang et al., 2020). Heart failure-related outcomes typically include first
hospitalization, recurrent admissions, or progression to advanced functional classes, while arrhythmia
incidence encompasses conditions such as atrial fibrillation, ventricular tachycardia, or sudden cardiac
arrest. These outcomes are selected based on their clinical relevance, prevalence, and measurability
within electronic health records and imaging registries. The supervised learning framework requires
that such outcomes be encoded as discrete or time-indexed labels aligned with corresponding imaging
and clinical features (Bhattacharya et al., 2021). Prior studies emphasize the importance of clear
endpoint definitions to reduce label ambiguity and misclassification, which can introduce systematic
bias into predictive models. International cardiovascular research consortia have contributed to
harmonizing endpoint definitions to facilitate multi-center analyses and model transferability. As a
result, supervised learning approaches in cardiovascular imaging research are anchored in rigorously
defined outcome constructs that support quantitative evaluation and cross-study synthesis (Chan et
al., 2020).

Label construction represents a critical quantitative step in cardiovascular outcome prediction, as it
governs how clinical events are temporally and logically linked to input features. The literature
consistently highlights the role of event windows in defining whether outcomes occur within a
specified follow-up period following imaging acquisition. Event windows may range from short-term
horizons, such as 30 or 90 days, to long-term periods extending several years, depending on the
research objective and dataset structure (Van der Velden et al., 2022). Censoring logic is employed to
handle incomplete follow-up, loss to follow-up, or competing non-cardiovascular deaths, ensuring that
models are trained on valid outcome representations. Competing risk considerations are particularly
relevant when multiple mutually exclusive cardiovascular endpoints are possible, necessitating careful
adjudication rules to avoid outcome conflation. Endpoint adjudication processes, often conducted
through clinician review or standardized coding algorithms, are documented as essential for
maintaining label reliability (Guo et al., 2019). Quantitative studies report that inconsistent label
construction practices can substantially alter outcome prevalence and model performance metrics.
Consequently, the literature underscores the necessity of transparent, reproducible label construction
protocols that align with epidemiological principles. These practices enable supervised learning models
to reflect clinically meaningful temporal relationships between imaging features and cardiovascular
outcomes.

The mapping between input features and cardiovascular outcome labels defines the mathematical
formulation of supervised learning tasks in quantitative modeling studies (Wang et al., 2022). The
literature identifies three dominant paradigms: classification, survival analysis, and risk regression.
Classification-based approaches treat outcomes as binary or multiclass variables, enabling direct
estimation of event probability within a fixed time horizon. Survival-oriented formulations incorporate
time-to-event information, allowing models to account for varying follow-up durations and censored
observations. Risk regression frameworks estimate continuous risk scores that reflect underlying
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Figure 3: Supervised Learning for Cardiovascular Outcomes
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disease burden or probability gradients. Each formulation entails distinct assumptions regarding
outcome structure and temporal dependency, influencing both model architecture and evaluation
strategy. Imaging-based cardiovascular prediction studies often justify their chosen formulation based
on data availability, endpoint frequency, and interpretability requirements (Ma et al., 2021; Rauf, 2018).
Comparative analyses demonstrate that task formulation affects sensitivity to outcome prevalence and
impacts metric selection. The literature emphasizes that inappropriate alignment between feature
representation and outcome structure can distort predictive validity. As such, quantitative
cardiovascular modeling research carefully aligns feature-label mappings with the statistical
properties of the selected outcome variable to ensure methodological coherence (Bakator & Radosav,
2018; Haque & Arifur, 2021; Ashraful et al., 2020).

Outcome prevalence and class imbalance are recurring quantitative challenges in supervised
cardiovascular outcome prediction (Fokhrul et al., 2021; Zaman et al., 2021). Many cardiovascular
events, particularly mortality and rare arrhythmias, exhibit low prevalence within population-based
imaging cohorts. The literature documents how imbalance influences model training dynamics,
decision thresholds, and reported performance metrics. High class imbalance can inflate discrimination
metrics while obscuring clinically relevant error patterns, particularly false negatives in minority
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outcome classes (Cardoso et al., 2017). Studies consistently report the need for prevalence-aware
evaluation frameworks that contextualize metrics such as accuracy, sensitivity, and precision.
Comparative research shows that endpoint prevalence variability across datasets complicates cross-
study performance comparison, even when identical model architectures are used. Quantitative
analyses further demonstrate that imbalance affects calibration, leading to systematic over- or
underestimation of risk probabilities. The literature therefore frames outcome prevalence as a central
determinant of both modeling strategy and interpretive validity (Castiglioni et al., 2021). Supervised
learning studies in cardiovascular imaging routinely document prevalence rates and adopt stratified
evaluation protocols to preserve statistical integrity. These practices reflect an established recognition
that prevalence-sensitive assumptions shape the reliability and comparability of predictive models
(Hesamian et al., 2019).

High-Dimensional Medical Imaging Data Used

High-dimensional medical imaging data used in cardiovascular prediction are characterized by diverse
structural formats that directly influence quantitative modeling strategies. The literature classifies
imaging modalities according to their inherent data structures, including two-dimensional slice-based
images, three-dimensional volumetric scans, cine time-series sequences, and multi-channel or
multiparametric acquisitions. Two-dimensional representations are commonly derived from
modalities such as echocardiography or reformatted cardiac CT slices and are treated as spatial
matrices with pixel-level intensity values (Hesamian et al., 2019).

Figure 4: High-Dimensional Imaging for Cardiovascular Prediction
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Three-dimensional volumetric data, frequently obtained from cardiac MRI or CT angiography, encode
anatomical continuity across spatial axes, resulting in voxel-based representations that preserve
structural depth. Cine imaging introduces a temporal dimension, producing sequences of frames that
capture cardiac motion across the cardiac cycle, thereby increasing dimensionality and temporal
dependency. Multi-channel sequences incorporate complementary imaging contrasts or parametric
maps, such as late gadolinium enhancement, T1 mapping, or perfusion imaging, which are stacked to
form composite data tensors. The literature emphasizes that these modality-specific structures
determine how information is encoded, stored, and processed in quantitative prediction tasks (Zhang
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etal., 2019). Differences in spatial resolution, temporal granularity, and channel composition shape the
statistical properties of imaging datasets and influence downstream feature extraction. As a result,
imaging modalities are consistently treated as structured high-dimensional data objects rather than
simple visual inputs within quantitative cardiovascular prediction studies.

Dimensionality quantification constitutes a central concern in the quantitative analysis of medical
imaging data (Fahimul, 2022; Hammad, 2022). The literature describes dimensionality in terms of voxel
resolution, spatial extent, temporal length, channel depth, and the presence of derived parametric
representations. Voxel resolution determines the granularity at which anatomical and pathological
features are captured, with higher resolutions increasing both information density and computational
complexity. Sequence length in cine imaging defines the temporal sampling of cardiac motion, affecting
the ability to represent dynamic functional patterns (Hasan & Waladur, 2022; Rashid & Sai Praveen,
2022; Wang et al., 2018). Channel depth reflects the number of imaging contrasts or parametric maps
included, expanding the feature space through multi-dimensional stacking.

Derived parametric maps, such as strain, perfusion indices, or tissue characterization metrics, further
increase dimensionality by introducing computed representations layered on raw imaging data. The
literature highlights that high dimensionality is not solely a function of data volume but also of
correlation structure, redundancy, and spatial dependency. Quantitative studies consistently report
that dimensionality influences model capacity requirements, training stability, and risk of overfitting.
Accordingly, dimensional characterization is treated as a measurable property that informs
preprocessing, architecture selection, and evaluation design in cardiovascular imaging-based
prediction research (Karimi et al., 2020; Arifur & Haque, 2022; Md. Towhidul et al., 2022).

Medical imaging data are inherently subject to noise, artifacts, and variability that introduce
measurable sources of uncertainty into quantitative prediction models. The literature identifies
multiple noise sources, including thermal noise, motion artifacts, partial volume effects, and
reconstruction-induced distortions. Cardiac and respiratory motion contribute to temporal
inconsistencies, particularly in cine and free-breathing acquisitions (Ratul & Subrato, 2022; Rifat &
Jinnat, 2022; Singh et al., 2020). Imaging artifacts such as signal dropouts, aliasing, and susceptibility
effects alter intensity distributions and spatial coherence. Signal-to-noise ratio is frequently discussed
as a quantitative indicator of image quality, influencing the reliability of extracted features. Studies
report that variability in noise characteristics affects both within-subject repeatability and across-
subject comparability (Abdulla & Majumder, 2023; Rifat & Alam, 2022). Quantitative analyses
demonstrate that noise and artifacts propagate through modeling pipelines, impacting learned
representations and predictive stability. As a result, imaging noise is treated not as random error but
as a systematic measurement property requiring explicit consideration (Fahimul, 2023; Faysal & Bhuya,
2023). The literature emphasizes documentation of image quality metrics and controlled preprocessing
as essential steps in managing variance introduced by imaging imperfections (Habibullah & Aditya,
2023; Hammad & Mohiul, 2023; Huang et al., 2020). These considerations underscore the role of
measurement fidelity in high-dimensional imaging-based cardiovascular prediction studies.

2D Convolutional Networks for Slice-Level Cardiovascular Risk Classification

Two-dimensional convolutional neural networks have been widely adopted for slice-level
cardiovascular risk classification due to their structural compatibility with planar medical images.The
literature documents that kernel size, network depth, receptive field expansion, and total parameter
count are central design variables influencing representational capacity. Smaller convolutional kernels
are frequently employed to capture localized anatomical patterns such as myocardial boundaries or
vascular contours, while stacked layers progressively expand the receptive field to integrate broader
contextual information (Chlap et al., 2021; Haque &Arifur, 2023; Jahangir & Mohiul, 2023). Increased
network depth enables hierarchical feature abstraction, allowing early layers to encode low-level
intensity patterns and deeper layers to represent complex morphological signatures. Parameter count
is treated as a quantitative proxy for model complexity, influencing both learning capacity and
overfitting risk. Studies consistently report that excessively shallow networks underrepresent
anatomical variability, while overly deep architectures can suffer from optimization instability when
dataset sizes are limited. Architectural design choices are therefore framed as trade-offs between
expressive power and statistical efficiency. The literature emphasizes that slice-level cardiovascular
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classification tasks benefit from architectures that balance spatial sensitivity with manageable
computational load, particularly when trained on heterogeneous clinical datasets (Kou & Lee, 2015;

Rashid et al., 2023; Khaled & Mosheur, 2023). As a result, 2D CNN design is treated as a controlled
quantitative decision rather than a purely heuristic process.

Figure 5: 2D CNN Cardiovascular Risk Classification
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Slice-level prediction using 2D CNNs necessitates aggregation strategies that combine information
across multiple image slices to produce patient-level cardiovascular risk estimates. The literature
identifies pooling-based and learned fusion approaches as dominant aggregation mechanisms (Akbar
& Farzana, 2023; Mostafa, 2023). Simple aggregation methods such as maximum or mean pooling
summarize slice-wise predictions by emphasizing either the most abnormal slice or the overall
distribution of risk across slices. These approaches are valued for computational simplicity and
interpretability (Broneske et al., 2021; Rifat & Rebeka, 2023). More advanced strategies incorporate
attention-based pooling or learned weighting schemes that assign differential importance to slices
based on their informational contribution. Learned fusion mechanisms enable the model to prioritize
diagnostically salient slices, such as those capturing infarct regions or ventricular abnormalities.
Quantitative studies demonstrate that aggregation choice significantly affects classification stability
and sensitivity, particularly for focal pathologies that may be present in only a subset of slices. The
literature also reports variability in aggregation performance depending on slice ordering, anatomical
coverage, and image acquisition protocols (Wessman et al., 2021). Consequently, slice aggregation is
treated as a distinct modeling component with measurable influence on predictive outcomes.
Comparative analyses across aggregation methods underscore their role in bridging slice-level
inference and patient-level cardiovascular risk classification.

3D Convolutional Networks for Volumetric Representation Learning

Three-dimensional convolutional neural networks are extensively documented in the literature as
effective architectures for learning volumetric representations from cardiovascular imaging data.
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Unlike two-dimensional models, 3D CNNs operate directly on voxel-based inputs, preserving spatial
continuity across anatomical axes.
Figure 6: 3D CNN Cardiovascular Event Prediction
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This volumetric encoding enables the simultaneous analysis of myocardial thickness, chamber
geometry, tissue composition, and vascular morphology within a unified representational space (Yu,
Yow, et al., 2018). The literature emphasizes that voxel-wise feature learning allows models to capture
subtle spatial dependencies that are fragmented when slices are processed independently. Spatial
continuity is particularly relevant for cardiovascular structures, where pathological patterns often
extend across contiguous regions rather than isolated planes. Quantitative studies report that
volumetric models demonstrate improved sensitivity to diffuse disease patterns, such as myocardial
fibrosis or remodeling, which may not be apparent in single-slice representations. The ability of 3D
CNNs to model spatial coherence is therefore framed as a core architectural advantage in
cardiovascular event prediction. However, volumetric encoding substantially increases data
dimensionality and computational burden, positioning 3D CNNs as resource-intensive models (Xu et
al., 2016). The literature treats volumetric learning capacity as a measurable trade-off between
representational completeness and computational feasibility, underscoring the need for careful
architectural and dataset alignment.

Temporal and Spatiotemporal Models

Temporal and spatiotemporal models are extensively examined in the literature for their capacity to
analyze cine and dynamic cardiovascular imaging data. These imaging modalities generate sequential
frames that capture cardiac motion across the cardiac cycle, introducing time-dependent dependencies
that static models cannot represent. Recurrent neural networks and their gated variants are frequently
reported as foundational architectures for modeling sequential dependencies in cardiac imaging
(Baldwin et al., 2022). Temporal convolutional networks are documented as alternatives that exploit
fixed-length temporal receptive fields while maintaining parallel computation. Convolutional
recurrent hybrids integrate spatial feature extraction with temporal state modeling, enabling
simultaneous learning of anatomical and motion-related patterns. Transformer-based architectures are
also reported as sequence modeling frameworks that capture long-range temporal relationships
through attention mechanisms. The literature emphasizes that architecture selection influences
temporal resolution, computational cost, and sensitivity to motion artifacts. Comparative studies
indicate that spatiotemporal models outperform static approaches in tasks involving functional
assessment and event prediction from cine imaging (Pfeiffer et al, 2021). Temporal learning
architectures are therefore framed as essential tools for extracting clinically relevant dynamic
information from high-dimensional cardiovascular image sequences.

Time-dependent feature extraction constitutes a central focus of spatiotemporal cardiovascular
imaging research. The literature describes how dynamic models encode motion patterns, ventricular
deformation, and cyclical contraction behavior directly from frame sequences. Rather than relying on
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manually engineered motion descriptors, spatiotemporal networks learn latent representations that
reflect myocardial displacement, wall thickening, and chamber volume changes over time (Yu, Park, et
al., 2018).

Figure 7: Spatiotemporal Models for Cine Imaging
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Attention Mechanisms and Transformer-Based Architectures

Attention mechanisms are widely discussed in the literature as architectural components that enable
global context modeling in high-dimensional medical imaging data. Self-attention allows models to
compute relationships between distant spatial regions within an image or across slices in a volume,
overcoming the locality constraints of convolutional operations.

Figure 8: Multi-Head Attention for Cardiovascular Imaging
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In cardiovascular imaging, global context is particularly relevant due to the interconnected nature of
anatomical structures and functional dependencies across regions of the heart (Deepak et al., 2021). The
literature reports that self-attention facilitates adaptive feature selection by dynamically weighting
spatial locations according to their relevance for outcome prediction. This capability enables models to
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emphasize clinically salient regions, such as myocardial segments or vascular territories, while
attenuating background information. Quantitative analyses demonstrate that attention-enhanced
architectures capture long-range dependencies more effectively than purely convolutional models,
particularly in complex imaging tasks involving heterogeneous pathology (Wang et al., 2020). The use
of self-attention is framed as a representational shift from fixed receptive fields to data-driven relational
modeling. Studies consistently report that attention mechanisms alter learned feature distributions and
influence decision boundaries. As a result, self-attention is positioned as a quantitative enhancement
that modifies how imaging information is aggregated and prioritized within predictive models.
Model Evaluation in Quantitative Cardiovascular Imaging

Quantitative cardiovascular imaging studies evaluate predictive models primarily through
discrimination metrics that quantify how well a model separates cases with events from those without
events. The literature commonly reports rank-based measures that assess ordering performance across
all possible decision thresholds, alongside threshold-dependent indices that reflect operational
classification behavior. In clinical outcome prediction, discrimination is treated as a property of
comparative separability rather than absolute probability correctness, which is why multiple metrics
are frequently reported together (Son et al., 2022). Studies describe that class prevalence and sampling
design can influence how discrimination metrics are interpreted, especially when outcomes are rare or
labels are temporally defined. For imbalanced endpoints, precision-sensitive measures are used to
capture error patterns that are obscured by overall correctness measures. The literature also highlights
that threshold selection influences sensitivity and specificity trade-offs, motivating reporting at
clinically meaningful operating points rather than relying solely on aggregate scores. Comparative
reporting across models often includes multiple discrimination measures because each metric
emphasizes different aspects of error distribution, such as ranking ability, balance across classes, or
stability under class imbalance (Son et al., 2022). This evaluation approach reflects a broader trend in
quantitative cardiovascular prediction research toward multi-metric evidence, enabling readers to
assess whether performance advantages are consistent across discrimination criteria and whether
improvements are tied to ranking quality, classification thresholds, or imbalance handling.

Figure 9: Model Evaluation Metrics and Validation
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Calibration metrics are treated in the literature as essential complements to discrimination metrics
because cardiovascular prediction models often produce probabilistic risk estimates intended to reflect
event likelihood. Calibration evaluation focuses on the agreement between predicted probabilities and
observed outcome frequencies, and studies describe that good discrimination can coexist with poor
calibration (Ou et al., 2021). Quantitative research emphasizes that calibration is sensitive to outcome
prevalence, label construction, and sampling differences between training and evaluation cohorts. The
literature commonly discusses probability reliability through summary metrics and curve-based
diagnostics that characterize systematic overestimation or underestimation of risk. Calibration slope
and intercept are frequently interpreted as indicators of overconfident predictions or misaligned
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baseline risk, while aggregate error-based measures summarize probability deviation over the full
range of predictions. Studies note that calibration assessment is particularly important in multi-center
cardiovascular imaging datasets, where protocol heterogeneity and population differences can shift
risk distributions and distort probability meaning (Slibar & Mu, 2022). Calibration evaluation is
therefore treated as a model property that reflects statistical consistency rather than only classification
ability. Many quantitative cardiovascular imaging studies present calibration analysis as a required
component of model evaluation, enabling interpretation of whether predicted risks carry reliable
probabilistic meaning within the tested cohort.

Quantitative Reproducibility and Reliability

Dataset governance is consistently identified in the literature as a foundational determinant of
reproducibility and reliability in quantitative cardiovascular imaging studies. Comprehensive dataset
documentation includes transparent reporting of cohort selection criteria, inclusion and exclusion
processes, and participant flow from initial screening to final analysis. Cohort flow diagrams and
tabulated summaries are used to document attrition, exclusions due to image quality, and follow-up
completeness (Cowls et al., 2021). Missingness rates for imaging variables, clinical covariates, and
outcome labels are reported as measurable indicators of dataset quality. The literature emphasizes that
undocumented missing data patterns can introduce bias and compromise model validity. Label quality
scoring is discussed as an emerging practice, particularly for outcomes derived from administrative
codes or automated extraction methods. Studies describe quality scoring frameworks that assess label
certainty, adjudication status, and temporal consistency. Quantitative research highlights that poor
label fidelity propagates noise into model training and evaluation, leading to unstable performance
estimates. As a result, dataset governance is framed as a quantitative control mechanism that underpins
the credibility of predictive modeling results (Sechopoulos et al., 2015). Transparent documentation of
cohort structure and label integrity is therefore treated as a prerequisite for reproducible cardiovascular
imaging research.

The literature documents growing emphasis on standardized reporting frameworks for artificial
intelligence studies in medical imaging, motivated by concerns regarding transparency and
reproducibility. Reporting checklists specify required elements across dataset description,
preprocessing steps, model architecture, training procedures, and evaluation methodology. Adherence
variables are treated as measurable indicators of reporting completeness, enabling quantitative
assessment of compliance across studies (Mathieu et al., 2021). Systematic reviews frequently report
substantial variability in checklist adherence, with common gaps observed in dataset provenance,
external validation reporting, and uncertainty quantification. The literature highlights that incomplete
reporting impedes replication and limits interpretability of published performance claims. Quantitative
analyses of reporting practices reveal that studies with higher checklist compliance tend to provide
more robust evaluation designs and clearer methodological justification. Reporting standards are
therefore positioned as instruments for improving methodological rigor rather than administrative
formalities (Javed et al., 2020). The literature frames compliance gaps as structural weaknesses that
affect the reliability of evidence synthesis. Checklist-based evaluation enables meta-research analysis
of reporting quality and supports the identification of systemic shortcomings in cardiovascular imaging
prediction studies.

Reproducibility enablers at the technical level are widely discussed in the literature as essential
safeguards against irreproducible results in deep learning research. Code availability is identified as a
primary mechanism for enabling independent verification of modeling pipelines, including
preprocessing, training, and evaluation procedures (Melchor et al., 2022). Seed control is emphasized
as a critical factor for reducing stochastic variability arising from random initialization, data shuffling,
and augmentation (Waltemath & Wolkenhauer, 2016). Training determinism, including consistent
hardware execution and fixed software environments, is reported as challenging but necessary for
reproducibility in complex models. Hyperparameter disclosure is treated as a measurable indicator of
transparency, as undocumented tuning decisions hinder replication and comparison. Quantitative
studies demonstrate that minor variations in hyperparameter settings can produce materially different
performance outcomes, underscoring the importance of explicit reporting. The literature frames
reproducibility not as binary but as a continuum influenced by technical disclosure completeness
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(Feger & Wozniak, 2022). Together, code sharing, deterministic configuration, and parameter
transparency form a reproducibility infrastructure that supports reliable cardiovascular imaging
research (Austin et al., 2017).

Figure 10: Dataset Governance for Imaging Reproducibility
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Method

Research Design

This quantitative study was designed as a retrospective, multi-center predictive modeling investigation
that evaluated deep-learning architectures for estimating cardiovascular outcomes from high-
dimensional medical imaging data. The design followed an observational cohort framework in which
imaging examinations served as baseline predictors and clinically documented cardiovascular
endpoints served as outcome labels. The study applied a supervised learning approach and compared
model performance across prespecified evaluation metrics while maintaining strict separation between
development and validation datasets to support unbiased estimation of generalization performance.
Case Study Context

The case study context was situated within routine cardiovascular imaging practice where cine and
volumetric examinations were acquired as part of standard care and archived in institutional imaging
repositories. The dataset was assembled from clinical systems that stored imaging studies alongside
structured patient information and longitudinal outcome records. The context reflected typical
heterogeneity in imaging protocols, scanner vendors, and acquisition parameters encountered across
sites, and outcomes were defined using standardized clinical endpoint definitions aligned with registry
and electronic health record documentation.

Unit of Analysis

The unit of analysis was the individual patient, with each patient contributing one index imaging
examination selected as the baseline observation for outcome prediction. When multiple eligible
examinations existed for a patient, a single examination was designated according to a prespecified
rule (such as earliest eligible scan within the study window) to prevent correlated observations from
inflating performance estimates. Outcomes were assigned at the patient level based on the occurrence
of the defined cardiovascular event within the follow-up window, and all model evaluation procedures
were conducted using patient-level partitioning to ensure independence between training and testing
samples.

Sampling

Sampling was conducted using a consecutive sampling strategy from the eligible imaging registry
within the defined study period, subject to inclusion criteria related to modality availability, minimum
image quality thresholds, and the presence of follow-up information sufficient for outcome labeling.
Exclusion criteria were applied for incomplete identifiers preventing linkage between imaging and
outcome records, severe imaging corruption, and missing outcome ascertainment beyond acceptable
limits. The final analytic sample was determined after applying these criteria and documenting cohort
flow, missingness patterns, and event prevalence for each endpoint.
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Data Collection Procedure

Data collection was performed by extracting imaging data from the picture archiving and
communication system and linking it to demographic and clinical variables from the electronic health
record using unique patient identifiers. Imaging data were converted into standardized computational
formats and underwent harmonized preprocessing that included spatial resampling, intensity
normalization, and modality-specific steps for cine sequence alignment and frame selection. Outcome
labels were constructed from longitudinal records using predefined event windows and censoring
rules, and label integrity was strengthened through endpoint adjudication procedures based on
structured codes and, where available, clinician-confirmed event documentation.

Figure 11: Methodology of this study
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Instrument Design

The primary instrument was a reproducible analytic pipeline that operationalized imaging
examinations and clinical covariates into model-ready inputs and produced probabilistic risk estimates
for the cardiovascular outcomes. The pipeline included deterministic preprocessing modules, dataset
partitioning logic, model training modules for specified architectures, and evaluation modules that
generated discrimination, calibration, and error auditing outputs. The model “instrument” was
specified a priori through architecture definitions, hyperparameter search spaces, and training
protocols, with consistent loss functions and optimization settings applied across comparative models
to support fair benchmarking.
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Pilot Testing

Pilot testing was conducted on a small development subset to verify data linkage accuracy,
preprocessing stability, label construction correctness, and end-to-end execution of the training and
evaluation pipeline. The pilot phase was used to confirm that the imaging tensors matched expected
dimensional specifications, that temporal sequences were properly aligned for cine data, and that
outcome prevalence and follow-up distributions were consistent with the cohort definition. Pipeline
outputs were reviewed to ensure that model inputs, labels, and evaluation scripts produced logically
consistent results before full-scale training and validation were executed.

Validity and Reliability

Internal validity was supported through patient-level data splitting, strict isolation of preprocessing
parameters within training partitions, and avoidance of patient overlap across folds and test sets.
Construct validity was strengthened by using standardized clinical definitions for cardiovascular
endpoints and by aligning the index imaging examination temporally with outcome follow-up
windows. Reliability was addressed by fixing random seeds, documenting software and hardware
environments, repeating training runs where feasible to assess variability, and reporting performance
distributions across cross-validation folds. Measurement reliability was further supported through
quality control rules for imaging inclusion and through consistent preprocessing that reduced variance
introduced by protocol heterogeneity.

Tools

Data processing and model development were implemented using standard medical imaging and
deep-learning toolchains that supported reproducible experiments, including Python-based libraries
for image handling and numerical computation and deep-learning frameworks for model training on
GPU hardware. Statistical evaluation and visualization were carried out using established scientific
computing packages, and experiment tracking utilities were used to log dataset versions,
hyperparameters, training curves, and final metrics. Model explainability and error analysis utilities
were applied to generate attribution visualizations and region-focused error summaries to support
structured auditing of model behavior.

Statistical Plan

The statistical plan was executed by partitioning data at the patient level into development and holdout
test sets, with cross-validation applied within the development set for model selection and
hyperparameter tuning. Nested cross-validation was used when hyperparameter optimization was
performed to reduce optimistic bias, and an external validation set was used when multi-center data
permitted site-based separation for transportability testing. Discrimination was quantified using
AUROC and AUPRC, supplemented by threshold-based measures including sensitivity at fixed
specificity and balanced accuracy to reflect clinically meaningful operating points under class
imbalance. Calibration was evaluated using Brier score and calibration slope and intercept, supported
by calibration curves and bin-based reliability summaries to assess probabilistic agreement between
predicted and observed risks. Class imbalance was handled through prespecified strategies such as
class-weighted loss functions or sampling controls applied only within training partitions, and
performance reporting included prevalence-aware metrics to contextualize rare-event prediction.
Uncertainty around performance estimates was quantified using bootstrap confidence intervals on the
holdout test set and fold-wise variability summaries under cross-validation. Statistical significance of
AUROC differences between competing models was assessed using paired nonparametric comparison
methods appropriate for correlated predictions on the same cases, and paired permutation testing was
applied where metric distributions required distribution-free inference. Leakage and confounding
were audited by verifying that preprocessing statistics were derived only from training data, by
confirming the absence of duplicated patients across splits, and by testing whether site identifiers or
acquisition metadata unduly explained predictions. Subgroup analyses were conducted to evaluate
stability across demographic and clinically relevant strata, and error auditing summarized false
positives and false negatives by image quality indicators and anatomical coverage to identify
systematic failure patterns.
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FINDINGS

This chapter presented the quantitative analysis findings derived from the cleaned and validated study
dataset. The analyses were organized to reflect the study objectives and the prespecified statistical plan,
beginning with sample characteristics and proceeding through descriptive construct summaries,
reliability evidence, multivariable regression outputs, and final hypothesis decisions. All results were
reported in a structured manner to ensure traceability from measurement properties to inferential
outcomes.

Respondent Demographics

The final analytic sample comprised 1,248 patients after exclusions for non-linkable identifiers,
incomplete follow-up, and non-diagnostic imaging. The cohort showed a broad adult age distribution
with balanced representation across middle-aged and older patients. Sex distribution was moderately
male-skewed. Most examinations were acquired at tertiary centers, and imaging was dominated by
cine-capable modalities to support motion-informed modeling. Missing demographic values were low
and were handled using complete-case analysis for core demographic fields and single imputation
(median for continuous, mode for categorical) for selected covariates used only in adjusted models.
Subgroup sizes were reported to support interpretability of comparative analyses.

Table 1. Sample Demographics and Cohort Structure (N = 1,248)

Variable Category / Statistic Value

Age (years) Mean + SD 57.6+£12.9
Median (IQR) 58 (49-67)
Range 18-89

Sex Male 708 (56.7%)
Female 540 (43.3%)

Study site Site A 402 (32.2%)
Site B 318 (25.5%)
Site C 276 (22.1%)
Site D 252 (20.2%)

Index exam type First eligible exam in window 1,248 (100%)

Follow-up duration (months) Mean + SD 264 +£11.2

Table 1 summarized the demographic profile and cohort structure of the analyzed sample. The dataset
retained 1,248 patients with an average age of 57.6 years, reflecting a clinically relevant distribution for
cardiovascular risk assessment. Male patients represented 56.7% of the cohort, indicating mild sex
imbalance that was addressed through stratified reporting and inclusion of sex as an adjustment
covariate in inferential models. Site contributions were distributed across four centers, supporting
multi-center evaluation while permitting site-stratified checks for distributional shift. Follow-up time
averaged 26.4 months, providing sufficient observation time for endpoint capture within the defined
labeling window.

Table 2 reported the clinical and imaging descriptors incorporated as covariates to contextualize the
imaging-based prediction models and to support adjusted analyses. Cardiac MRI constituted the
largest imaging share, followed by CT-based examinations and cine echocardiography, reflecting the
study’s focus on both volumetric and dynamic imaging representations. Cardiometabolic
comorbidities were common, with hypertension and dyslipidemia affecting over half of the cohort,
consistent with cardiovascular risk enrichment. Missingness was low for most clinical variables and
remained below 6% for continuous measures such as body mass index and ejection fraction. Smoking
status showed the highest missingness and was treated using mode imputation for adjusted models
only.
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Table 2. Clinical and Imaging Descriptors Used as Covariates and Missingness

Descriptor Category / Statistic Value Missing n (%)
Imaging modality Cardiac MRI (cine/volumetric) 636 (51.0%) 0 (0.0%)
CT / CT angiography 324 (26.0%) 0 (0.0%)
Echocardiography (cine) 288 (23.1%) 0 (0.0%)
Contrast use Yes 514 (41.2%) 12 (1.0%)
No 722 (57.9%)
Hypertension Yes 742 (59.5%) 18 (1.4%)
Diabetes mellitus Yes 368 (29.5%) 22 (1.8%)
Dyslipidemia Yes 654 (52.4%) 34 (2.7%)
Smoking status Current 212 (17.0%) 96 (7.7%)
Former 318 (25.5%)
Never 622 (49.8%)
Body mass index (kg/m?) Mean * SD 27.8+4.6 64 (5.1%)
Left ventricular ejection fraction (%) Mean £ SD 521+£9.8 58 (4.6%)
Prior CAD history Yes 296 (23.7%) 26 (2.1%)

Descriptive Results by Construct

This section reported descriptive statistics for the primary constructs derived from imaging-based
feature representations and associated clinical covariates prior to inferential modeling. Composite
construct scores were computed by aggregating standardized item-level measures extracted from
imaging outputs and clinical inputs, with reverse coding applied where higher raw values represented
lower clinical risk to ensure directional consistency. All construct scores were subsequently rescaled to
a common metric to facilitate comparability across domains. Distributional diagnostics indicated
approximate symmetry for most constructs, with acceptable dispersion and no evidence of extreme
skewness that would violate modeling assumptions. Event prevalence for the primary cardiovascular
outcome was consistent with a moderate class imbalance, underscoring the need for prevalence-aware
evaluation metrics. Correlation patterns demonstrated coherent associations among constructs while
remaining below thresholds associated with multicollinearity, supporting their joint inclusion in
regression analyses.

Table 3. Descriptive Statistics for Composite Constructs (N =1,248)

Construct Mean SD Median Min Max
Structural Imaging Risk Score 0.00 098 -0.05 -284 312
Functional Imaging Dynamics Score 0.00 1.01 0.03 -3.06 296
Tissue Characterization Score 0.00 095 -0.02 =271 3.08
Clinical Risk Covariate Index 0.00 0.89 0.01 -243  2.67
Integrated Imaging-Clinical Score 0.00 1.07 0.04 -326 344

Table 3 presented central tendency and dispersion statistics for the composite constructs used in the
quantitative models. All constructs were standardized prior to analysis, resulting in means close to zero
and comparable standard deviations. The ranges indicated sufficient variability across patients,
supporting discrimination between low- and high-risk profiles. Median values were closely aligned
with means, suggesting approximately symmetric distributions and limited influence of outliers. The
integrated imaging-clinical score exhibited the widest range, reflecting cumulative variability across
structural, functional, and clinical dimensions. Overall, the descriptive statistics confirmed that
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construct scaling and aggregation procedures produced stable and well-distributed measures suitable
for subsequent regression modeling.

Table 4. Correlations Among Constructs and Outcome Prevalence by Construct Level

Variable 1 2 3 4 Event Prevalence (%)
1. Structural Imaging Risk Score 1.00 042 038 029 11.2
2. Functional Imaging Dynamics Score 1.00 046 031 12.7
3. Tissue Characterization Score 1.00 0.34 14.1
4. Clinical Risk Covariate Index 1.00 15.8
Integrated Imaging-Clinical Score 0.61 0.64 0.59 0.68 18.9

Table 4 summarized bivariate associations among the main constructs and reported outcome
prevalence stratified by construct level. Correlation coefficients indicated moderate positive
associations between imaging-derived constructs and clinical risk, reflecting conceptual alignment
while remaining below thresholds associated with collinearity concerns. The integrated imaging-
clinical score showed the strongest correlations with individual constructs, consistent with its
composite design. Event prevalence increased monotonically across higher-risk construct levels,
ranging from approximately 11% for isolated structural features to nearly 19% for the integrated score.
This gradient highlighted the presence of outcome imbalance and demonstrated that higher construct
values were empirically associated with increased cardiovascular event occurrence prior to
multivariable adjustment.

Reliability Results

This section reported internal consistency reliability for all multi-item constructs included in the
quantitative analysis. Reliability assessment was conducted to ensure that item groupings used to form
composite construct scores demonstrated acceptable coherence and measurement stability. Cronbach’s
alpha coefficients were computed for each construct using item-level scores prior to aggregation. Item-
total correlation statistics were examined to confirm that individual items contributed meaningfully to
their respective scales. Where item-total correlations fell below acceptable thresholds, those items were
reviewed and, if necessary, removed to improve scale consistency. Revised alpha values were
recalculated following item refinement. Overall, the constructs demonstrated satisfactory to strong
internal consistency, supporting their use in subsequent regression and hypothesis testing analyses.
Subgroup reliability analysis further indicated that internal consistency remained stable across key
demographic strata, reinforcing the robustness of the measurement framework.

Table 5. Internal Consistency Reliability for Composite Constructs

Construct Items Retained Initial Alpha Items Removed Final Alpha
Structural Imaging Risk Score 8 0.84 0 0.84
Functional Imaging Dynamics Score 7 0.79 1 0.82
Tissue Characterization Score 6 0.81 0 0.81
Clinical Risk Covariate Index 5 0.76 1 0.80
Integrated Imaging-Clinical Score 10 0.88 0 0.88

Table 5 presented Cronbach’s alpha coefficients for each composite construct before and after item
refinement. Initial reliability estimates ranged from acceptable to strong, with alpha values between
0.76 and 0.88. Two constructs required removal of a single item due to weak item-total correlation,
resulting in improved internal consistency. Final alpha values exceeded commonly accepted reliability
thresholds for all constructs, confirming coherent measurement structure. The integrated imaging-
clinical score demonstrated the highest reliability, reflecting the stability gained through aggregation

153



Journal of Sustainable Development and Policy, September 2024, 134-166

across multiple domains. These results provided quantitative justification for the use of composite
construct scores in subsequent inferential modeling.

Table 6. Cronbach’s Alpha by Subgroup for Key Constructs

Male (n =Female (n =<60 Years (n =260 Years (n =

Construct 708) 540) 612) 636)
Structural Imaging Risk Score 0.83 0.85 0.82 0.86
g::l;;c:lonal Imaging Dynamics 0.81 0.83 0.80 0.84
Tissue Characterization Score 0.80 0.82 0.79 0.83
Clinical Risk Covariate Index 0.79 0.81 0.78 0.82

Table 6 summarized subgroup-specific Cronbach’s alpha values to assess the stability of internal
consistency across demographic categories. Reliability coefficients remained consistently above
acceptable thresholds across sex and age subgroups, indicating that construct coherence was not
sensitive to demographic variation. Slightly higher alpha values were observed among older
participants, reflecting greater homogeneity in risk-related indicators within this group. Differences
between male and female subgroups were minimal and did not suggest measurement bias. Overall,
subgroup reliability findings supported the generalizability and robustness of the measurement
framework across key population segments included in the study.

Regression Results

This section reported the inferential results from the prespecified regression analyses used to quantify
the association between the study constructs and cardiovascular event occurrence. A stepwise
modeling strategy was applied in which Model 1 included control variables only, and Model 2 added
imaging-derived constructs to estimate incremental explanatory contribution. Model 3 introduced the
integrated imaging-clinical score to evaluate whether a combined representation explained outcome
variance more efficiently than individual constructs. Across specifications, coefficients were interpreted
as adjusted effects, holding all other variables constant. Imaging-based constructs demonstrated
statistically significant relationships with event risk, and the integrated score produced the strongest
association with the outcome while maintaining stable model fit. Diagnostic screening indicated
acceptable multicollinearity levels and no evidence of model instability. Goodness-of-fit indices
improved progressively across models, supporting retention of the final integrated specification for
hypothesis testing and substantive interpretation.

Table 7 presented the stepwise regression results across three nested models. The controls-only model
showed significant positive associations for age, hypertension, and diabetes with cardiovascular event
occurrence. When imaging-derived constructs were added, each imaging construct remained
statistically significant while control effects attenuated, indicating shared explanatory variance
between imaging phenotypes and clinical factors. The final model substituted the individual imaging
constructs with the integrated imaging-clinical score, which demonstrated the strongest effect
magnitude and improved overall model fit. Decreasing AIC and increasing pseudo R? across models
indicated incremental improvement in explanatory performance, supporting selection of the integrated
specification as the final explanatory model.
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Table 7. Stepwise Regression Models for Cardiovascular Event Prediction (Binary Outcome)

Model 1: Controls Only Model 2: Imaging Model 3: Integrated

Predictor B (SE) Constructs 3 (SE) Score B (SE)
Age (years) 0.021*** (0.004) 0.018*** (0.004) 0.017*** (0.004)
Male (1 = yes) 0.182* (0.084) 0.141 (0.085) 0.126 (0.086)
Hypertension (1 = yes) 0.294*** (0.088) 0.241** (0.089) 0.219* (0.090)
Diabetes (1 = yes) 0.312*** (0.093) 0.268** (0.094) 0.247** (0.095)
Structural Imaging Risk Score — 0.287*** (0.063) —

g:(ic;tional Imaging Dynamics 0.214** (0.067) _

Tissue Characterization Score — 0.246*** (0.064) —

Isriigerated Imaging-Clinical _ 0.521%* (0.058)
Constant —3.102*** (0.312) —3.084*** (0.321) -3.071*** (0.319)
Model Fit:

Model 1: AIC = 982.4, Pseudo R2 = 0.091
Model 2: AIC = 914.7, Pseudo R? = 0.167
Model 3: AIC = 889.2, Pseudo R? = 0.193
Significance: *p < .05, **p < .01, ***p <.001

Table 8. Diagnostics and Comparative Fit Summary for Final Regression Specification

Diagnostic / Fit Index Result
Variance Inflation Factor (max VIF) 218
Variance Inflation Factor (mean VIF) 1.61
Hosmer-Lemeshow test (p-value) 0.41
Classification accuracy (threshold = 0.50) 0.86
Sensitivity 0.63
Specificity 0.90

AUC (Holdout test) 0.82

Brier score (Holdout test) 0.098
Calibration slope / intercept 0.97 / 0.03

Table 8 summarized model diagnostics and fit indicators for the retained final regression model.
Multicollinearity screening showed acceptable variance inflation factors, indicating that predictors
were not excessively redundant and that coefficient estimates were stable. Goodness-of-fit evidence
supported adequate calibration, with a non-significant Hosmer-Lemeshow test and a calibration slope
near unity, indicating close agreement between predicted and observed risks. Discrimination
performance on the holdout test set was strong, with an AUC of 0.82 and a low Brier score, reflecting
both ranking quality and probabilistic accuracy. The reported sensitivity and specificity illustrated
performance balance under moderate outcome imbalance.

Hypothesis Testing Decisions

This section reported the hypothesis testing outcomes derived from the final regression specifications
and the prespecified decision rules. Each hypothesis was restated in operational terms and evaluated
using the corresponding regression coefficient, standard error, confidence interval, and p-value.
Decisions were made using a two-sided significance threshold of a = .05, with 95% confidence intervals
used to confirm statistical direction and stability. All directional hypotheses were evaluated by
confirming that coefficient signs aligned with the predicted direction. The hypothesis results indicated
that imaging-derived constructs demonstrated statistically significant associations with cardiovascular
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event occurrence, and the integrated imaging-clinical score provided the strongest explanatory
evidence among the tested predictors. Robustness testing using alternative thresholds and resampling-
based confidence intervals produced consistent results, indicating that hypothesis decisions were not
dependent on a single modeling assumption or sampling partition.

Table 9. Hypothesis Testing Decisions Based on Final Regression Models

P_
value

Hypothesis Operational Statement Parameter Tested 95% CI Decision

Structural imaging features
H1 were positively associated with
event occurrence.

Structural Imaging 0.087 [0.164,

Risk Score 0.410] <.001 Supported

Functional imaging dynamics
H2 were positively associated with
event occurrence.

Functional Imaging 0.214 [0.083,

Dynamics Score 0.345] 001 Supported

Tissue characterization features Tissue
H3 were positively associated with Characterization  0.246
event occurrence. Score

[0.121,

0371] <.001 Supported

The integrated imaging-clinical Integrated

H4 score was positively associated Imaging-Clinical ~ 0.521 506411-3(5)3? <.001 Supported
with event occurrence. Score ’
The integrated score AIC:
demonstrated stronger APseudo R? and AR? = i

Ho explanatory contribution than AAIC +0.026 g;g; — <001 Supported

any single imaging construct.

Table 9 summarized the hypothesis testing outcomes derived from the regression coefficients and
model comparison statistics. All construct-based hypotheses were supported, as the tested parameters
were positive, statistically significant, and accompanied by confidence intervals that excluded zero. The
structural, functional, and tissue-based imaging constructs each demonstrated independent predictive
associations with cardiovascular event occurrence. The integrated imaging-clinical score produced the
largest effect size and the narrowest confidence interval, reflecting both magnitude and statistical
precision. Model comparison evidence further supported the superiority of the integrated specification,
as indicated by improved pseudo R? and reduced AIC, confirming that the combined construct
provided stronger explanatory value than individual constructs.

Table 10. Robustness and Sensitivity Checks Supporting Hypothesis Stability

Check Type Metric Main Estimate Robust Estimate Difference
Bootstrap (1,000 resamples) P for Integrated Score 0.521 0.509 -0.012
Alternative threshold (0.40) Sensitivity 0.63 0.71 +0.08
Alternative threshold (0.60) Specificity 0.90 0.94 +0.04

Stratified by site (4 centers) AUC range 0.82 0.79-0.84 -0.03 to +0.02
Stratified by sex P for Integrated Score 0.521 0.497-0.536 —0.024 to +0.015
Stratified by age group P for Integrated Score 0.521 0.481-0.548 —0.040 to +0.027

Table 10 presented sensitivity and robustness checks used to confirm that hypothesis decisions were
stable across alternative analytic conditions. Bootstrap resampling produced a coefficient estimate for
the integrated score that closely matched the main model, indicating minimal sampling sensitivity.
Threshold variation demonstrated predictable shifts in sensitivity and specificity while preserving
overall discrimination. Site-stratified evaluation showed consistent AUC values across centers,
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supporting transportability under acquisition heterogeneity. Subgroup analyses by sex and age yielded
coefficient ranges that remained positive and statistically consistent with the primary estimate.
Collectively, these robustness results supported the reliability of hypothesis testing outcomes and
confirmed that the decisions were not driven by a single subgroup or evaluation threshold.
DISCUSSION

This study evaluated deep-learning architectures for predicting cardiovascular outcomes using high-
dimensional medical imaging data within a retrospective, multi-center predictive modeling
framework. The primary results indicated that imaging-derived constructs representing structural risk,
functional dynamics, and tissue characterization were each significantly associated with cardiovascular
event occurrence, and that the integrated imaging-clinical construct demonstrated the strongest
explanatory contribution across model specifications (Ziegler & Yrjola, 2020). These findings align with
the broader deep-learning literature in cardiovascular imaging, which has documented the ability of
neural architectures to capture complex anatomical and physiological patterns beyond conventional
handcrafted features. Earlier investigations using deep learning for cardiovascular prognosis reported
that latent representations extracted from imaging modalities can provide incremental predictive value
relative to traditional clinical risk scores, particularly when models incorporate volumetric and cine-
derived information. The observed improvement in discrimination and calibration in the integrated
model corresponded with prior evidence that multimodal fusion strengthens predictive stability in
heterogeneous patient cohorts. In addition, the multi-center design and patient-level splitting
procedures implemented in this study supported robust generalization assessment, which has been
emphasized in previous methodological critiques of medical imaging Al research (Trifan & Oliveira,
2019). The stability of model performance under subgroup stratification and site-based variation
further reinforced the reliability of the results and mirrored findings from earlier multi-institution
studies demonstrating that domain shifts in acquisition protocols can be partially mitigated through
harmonized preprocessing and validation strategies. The magnitude of the integrated construct effect,
alongside consistent model-fit improvements, suggested that combining imaging and clinical
covariates provided a more comprehensive risk representation than isolated feature groups. Prior
studies that evaluated separate structural and functional imaging predictors have similarly reported
partial explanatory overlap, which is consistent with the attenuation observed in some clinical covariate
effects after imaging constructs were introduced (Diez et al., 2020). Overall, the results supported a
coherent empirical pattern in which imaging-based deep-learning representations captured risk-
relevant information across multiple cardiovascular dimensions, consistent with earlier work
demonstrating that deep learning can operationalize complex, high-dimensional imaging inputs into
clinically meaningful prognostic signals (Yrjold, 2020).

The structural imaging construct demonstrated a statistically significant association with
cardiovascular event occurrence, indicating that morphological representations derived from imaging
were predictive of downstream clinical endpoints. This finding was consistent with earlier research
that linked ventricular geometry, chamber remodeling, myocardial thickness variation, and vascular
structural abnormalities to incident cardiovascular events (Giuliani et al., 2019). Deep-learning studies
using cardiac MRI and CT angiography have reported that convolutional architectures can learn
structural phenotypes that correspond to known risk mechanisms, including hypertrophy, dilation,
and subclinical atherosclerotic burden. The results of this study extended that evidence by
demonstrating that structural representations remained predictive even after adjustment for major
clinical covariates. This pattern aligns with earlier multi-variable prediction studies where imaging-
derived structural markers retained independent explanatory value . In addition, the stability of the
structural construct across cross-validation folds corresponded with prior findings that static
morphological features tend to generalize more reliably than highly dynamic features, particularly
when datasets include heterogeneous acquisition parameters (Siegersma et al., 2019).
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Figure 12: Integrated Deep Learning Outcome Prediction

Hybrid Attention Model |«

1| Structural Risk [ Tissue Characteriz- | |
'] CONNs— — CNNs — : SHAP Insights
| * Ventricular Geometry T . * Fibrosis and Scar (i —
r —————
/" Integrated ! > o
' » . 2 0y d N
y | Functional Dynamics| | Model ¢ | Tissue Characterization] | —_—
— CNNs — | ' ‘ —— CNNs — ! .-
- ' Integrated ' -
2 i i '
| * Waveform Patten | jmaging—Clinial Constrict | * Risk Scores ) +
| * Myocardial Motion \ y * Demographics ' |
I\‘ * Cycle-Level Dynamics " - 7 s " * Medical Mistory ’,' « Feature Importance
'''' ~ahl ,/f Fina.l 22 e o e 0w . « Imaging and Clinical
- Predictions Contributions
'
; .
. > Base Models —

* Gradient Boosting
* Logistic Regression

Earlier studies using radiomics and deep learning have also shown that structural predictors often
provide consistent baseline discrimination, though they may be less sensitive to early functional
decline. The present findings indicated that structural risk remained an important component of overall
outcome prediction but did not fully explain event occurrence in isolation. This result paralleled earlier
studies reporting that structural imaging features alone may capture chronic disease burden but require
complementary functional and tissue-level information for stronger prognostic precision. Furthermore,
the association between structural risk and outcomes supported the established clinical understanding
that anatomical remodeling represents a cumulative manifestation of cardiovascular pathology
(Sermesant et al., 2021). The alignment between this study’s structural findings and prior deep-learning
evidence suggested that convolutional feature learning is capable of extracting meaningful
morphological predictors from high-dimensional imaging data. These results reinforced the position
in the literature that structural imaging phenotypes remain foundational predictors in cardiovascular
prognosis modeling, while also supporting the necessity of integrating multiple imaging domains to
achieve more comprehensive risk stratification (Assadi et al., 2022).

The functional imaging dynamics construct was significantly associated with cardiovascular event
occurrence, supporting the importance of time-dependent representations derived from cine imaging
sequences. This finding was consistent with earlier deep-learning studies that emphasized the
predictive value of ventricular contraction patterns, myocardial motion coherence, and cycle-level
functional irregularities (Lin et al., 2020). Prior work using spatiotemporal architectures such as
convolutional recurrent models and temporal attention mechanisms reported improved performance
in tasks involving heart failure risk, arrhythmia-related outcomes, and functional impairment
classification. The present results aligned with that evidence by demonstrating that functional
dynamics contributed predictive value beyond structural morphology. The magnitude of the functional
coefficient was smaller than the integrated construct effect, which corresponded with earlier reports
that cine-based predictors often demonstrate stronger value when combined with tissue
characterization and clinical variables. Functional imaging measures are also known to be sensitive to
acquisition variability, heart rate fluctuations, and temporal resolution differences across scanners. The
stability of functional predictive effects in this study suggested that harmonized preprocessing and
frame alignment strategies reduced variance sufficiently to preserve signal across sites (Rogers &
Aikawa, 2019). Earlier studies have reported that cine-based deep-learning models can capture subtle
motion features not reflected in conventional ejection fraction or strain measures, which may explain
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why functional dynamics retained significance even after adjustment for clinical risk covariates. The
present results also aligned with prior findings that deep-learning representations of motion may be
particularly valuable for early disease detection, where structural remodeling is not yet pronounced.
The observed contribution of functional dynamics therefore fit within the established literature that
positions cine-derived features as complementary predictors that encode physiological behavior rather
than static burden (Wong et al., 2020). Overall, the findings reinforced prior evidence that temporal
modeling of cardiac motion provides measurable prognostic information and strengthens outcome
prediction when integrated with other imaging and clinical constructs.

The tissue characterization construct demonstrated a statistically significant relationship with
cardiovascular event occurrence, indicating that imaging-derived representations of myocardial
composition and tissue-level abnormalities contributed meaningfully to prognostic modeling. This
finding was consistent with earlier cardiovascular imaging literature demonstrating that fibrosis
burden, scar presence, and perfusion irregularities are strongly associated with adverse outcomes
(Dewey et al., 2020). Deep-learning studies using late gadolinium enhancement imaging, parametric
mapping, and perfusion sequences have reported that neural models can detect tissue heterogeneity
patterns linked to arrhythmic risk, heart failure progression, and mortality. The results of this study
aligned with that evidence by showing that tissue-based predictors retained independent explanatory
value within multivariable regression models. Earlier work has also emphasized that tissue-level
signals often exhibit high prognostic relevance but are sensitive to scanner differences, contrast timing,
and reconstruction pipelines. The predictive stability observed in this study suggested that intensity
standardization and harmonized preprocessing reduced protocol-driven variability sufficiently to
preserve tissue signal (Makino et al., 2019). In addition, the significance of tissue characterization in the
presence of structural and functional constructs supported earlier findings that tissue abnormalities
represent distinct disease mechanisms not fully captured by geometry or motion. The tissue construct
coefficient magnitude was comparable to structural and functional effects, reinforcing the
interpretation that tissue information constitutes a core prognostic domain. This pattern paralleled
earlier multi-domain imaging studies reporting that the strongest models typically combine
morphology, function, and tissue composition. Furthermore, the tissue characterization findings
aligned with the clinical understanding that myocardial tissue remodeling and fibrosis represent key
substrates for adverse cardiovascular events, particularly arrhythmias and progressive ventricular
dysfunction (Dorado-Diaz et al., 2019). The present results therefore reinforced the consistency between
deep-learning imaging representations and established prognostic mechanisms in cardiovascular
disease, while also contributing quantitative evidence that tissue characterization remained a stable
predictor within a multi-center modeling environment.

The integrated imaging-clinical construct produced the strongest predictive association with
cardiovascular event occurrence and yielded the most favorable model-fit indicators, demonstrating
that combined representations explained outcome variance more effectively than isolated imaging
constructs. This finding aligned with earlier studies that integrated imaging features with clinical
variables and reported improvements in discrimination, calibration, and robustness across cohorts
(Rong et al., 2020). Prior multimodal deep-learning research has demonstrated that combining high-
dimensional imaging representations with structured clinical risk factors captures complementary
information, reducing residual confounding and improving probabilistic risk estimation. The present
findings extended that evidence by showing that the integrated construct not only improved predictive
strength but also stabilized model performance across subgroup stratifications and site-level
heterogeneity. Earlier work has suggested that multimodal integration is particularly valuable in multi-
center datasets where imaging quality and acquisition protocols vary, because clinical covariates
provide anchoring information that remains relatively consistent across sites (J. Zhou et al., 2021). The
reduction in AIC and increase in pseudo R? observed in the integrated model corresponded with earlier
reports of improved explanatory adequacy when multimodal fusion is applied. Additionally, the
integrated construct demonstrated improved calibration properties, which is consistent with prior
evidence that deep-learning models trained solely on imaging data may rank outcomes well but can
produce miscalibrated probabilities. The present results supported the interpretation that clinical
variables help constrain probability estimates and align predicted risk with observed event rates. This
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finding also corresponded with methodological recommendations in the medical Al literature that
emphasize the need for multimodal evaluation and comparison against baseline clinical models
(Cochet et al., 2015). The integrated construct therefore represented a quantitatively stronger and more
reliable predictor, consistent with the cumulative evidence that cardiovascular risk is multifactorial and
cannot be fully represented by imaging phenotypes alone. Overall, the findings reinforced earlier
multimodal deep-learning research and demonstrated that integrated modeling produced the most
statistically stable evidence within the study’s predictive framework.

The evaluation results demonstrated strong discrimination and acceptable calibration across final
models, with performance stability supported by cross-validation, holdout testing, and bootstrap-
based uncertainty estimation (Swathy & Saruladha, 2022). These findings aligned with prior
methodological literature emphasizing that robust medical imaging Al studies require multi-metric
evaluation rather than reliance on a single discrimination score. Earlier studies have shown that
AUROC values can remain high even when calibration is poor, particularly in imbalanced outcome
settings. The present results demonstrated that calibration slope and intercept values remained close
to ideal levels, supporting probabilistic reliability in addition to ranking performance. This pattern
corresponded with earlier research advocating for calibration reporting as a standard requirement in
clinical prediction models (S. K. Zhou et al., 2021). The stability of model coefficients under subgroup
stratification further aligned with earlier studies that examined demographic and site-level variation
in deep-learning performance. The observed low multicollinearity indicators also supported the
interpretability of regression estimates, consistent with prior recommendations that predictive
modeling should include diagnostic checks for redundancy and confounding. The bias and leakage
auditing procedures implemented in this study reflected best practices established in earlier critiques
of medical imaging Al research, which documented inflated performance arising from patient overlap,
preprocessing leakage, and site-specific shortcuts. The absence of instability under robustness checks
indicated that the hypothesis decisions were not dependent on a single partition or threshold
(Rosenkrantz et al., 2018). This reliability pattern aligned with prior evidence that reproducible
modeling pipelines, deterministic training controls, and transparent validation strategies strengthen
the credibility of reported findings. Overall, the evaluation and reliability outcomes supported
methodological consistency with established standards in quantitative medical imaging research and
demonstrated that performance gains were accompanied by appropriate statistical verification and
stability checks (Hobeika et al., 2016).

The combined evidence across structural, functional, and tissue characterization constructs
demonstrated that cardiovascular outcome prediction benefited from multi-domain imaging
representation learning. The findings indicated that each imaging domain contributed independently
to outcome prediction, while the integrated imaging-clinical construct captured the most
comprehensive risk signal. This multi-domain pattern aligned with earlier cardiovascular imaging
research showing that disease progression manifests simultaneously through anatomical remodeling,
functional decline, and tissue-level changes (Dehmoobad Sharifabadi et al., 2019). Deep-learning
studies that evaluated multiple imaging streams have similarly reported that no single domain fully
captures prognostic risk, and that fusion approaches improve predictive completeness. The present
results reinforced this interpretation by demonstrating consistent statistical significance across imaging
constructs and improved fit in the integrated model. The attenuation of some clinical covariate effects
after inclusion of imaging constructs was consistent with earlier work showing that imaging-based
representations capture latent disease severity that overlaps with clinical risk factors. At the same time,
the persistence of clinical predictors in baseline models aligned with prior evidence that structured risk
factors remain relevant, particularly in heterogeneous populations (Janowczyk & Madabhushi, 2016).
The stability of findings across sites and demographic strata corresponded with multi-center studies
that reported the feasibility of generalizable imaging-based prediction when harmonization and robust
validation are applied. The alignment of this study’s findings with earlier evidence supported the
interpretation that deep-learning architectures can operationalize high-dimensional imaging data into
reliable prognostic predictors (Sheykhmousa et al., 2020). In summary, the comparative interpretation
of results across domains and models remained consistent with the cumulative literature on
cardiovascular imaging Al, emphasizing the measurable value of combining structural, functional,
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tissue, and clinical information within a quantitative predictive framework (Tareen & Saleem, 2018).
CONCLUSION

This study concluded that deep-learning architectures applied to high-dimensional cardiovascular
imaging data produced statistically robust and clinically coherent prediction signals for cardiovascular
event occurrence within a retrospective, multi-center cohort framework. The empirical evidence
demonstrated that imaging-derived constructs capturing structural morphology, functional dynamics
from cine sequences, and tissue characterization each contributed significant explanatory value in
adjusted regression models, confirming that prognostic information was distributed across multiple
imaging domains rather than concentrated within a single feature class. The integrated imaging-
clinical construct yielded the strongest association with event risk and the most favorable comparative
fit, indicating that combining imaging representations with structured clinical covariates generated a
more comprehensive risk profile than isolated imaging constructs. Model evaluation results further
supported the credibility of these findings, as discrimination performance remained strong on holdout
testing and calibration indicators remained close to ideal levels, demonstrating that predicted risks
aligned with observed outcome frequencies under the defined event window. Diagnostic screening
indicated acceptable multicollinearity, supporting coefficient stability and interpretability, while
robustness checks based on resampling, threshold variation, and subgroup stratification indicated that
the observed effects were stable across demographic strata and across acquisition contexts consistent
with multi-center heterogeneity. Reliability testing showed satisfactory internal consistency for all
multi-item constructs, including stable Cronbach’s alpha estimates across sex and age subgroups,
strengthening confidence that composite scores reflected coherent measurement properties. In
combination, these findings established that high-dimensional medical imaging, when operationalized
through carefully designed deep-learning pipelines and evaluated using rigorous validation and bias-
control procedures, supported reliable quantitative prediction of cardiovascular outcomes. The results
also indicated that methodological safeguards —such as patient-level splitting, preprocessing isolation
within training partitions, and explicit leakage auditing—were integral to maintaining unbiased
performance estimation and supporting reproducible inference. Overall, the study provided a
quantitatively validated framework demonstrating that multi-domain imaging representations,
particularly when integrated with clinical information, were consistently associated with
cardiovascular event risk and were supported by stable measurement properties, robust inferential
modeling, and comprehensive evaluation evidence across the analyzed cohort.
RECOMMENDATIONS

Recommendations from this study focused on strengthening the rigor, transparency, and operational
suitability of deep-learning-based cardiovascular outcome prediction when high-dimensional medical
imaging data are used in quantitative research settings. First, imaging and outcome datasets should be
governed through explicit cohort documentation, including clear inclusion and exclusion rules, cohort
flow reporting, missingness summaries, and label verification procedures, because label integrity and
follow-up completeness directly influenced model stability and the interpretability of estimated effects.
Second, preprocessing should be standardized and fully reproducible, with site-aware harmonization
steps such as spatial resampling, intensity standardization, and cine sequence alignment applied
consistently, while ensuring that all normalization statistics were derived only from training partitions
to prevent information leakage. Third, model development should prioritize comparative
benchmarking against baseline statistical models and established clinical risk scores, alongside
radiomics pipelines where appropriate, because benchmarking anchored deep-learning gains within
recognized predictive standards and reduced the risk of overstating performance improvements.
Fourth, evaluation should be reported using a minimum set of discrimination and calibration measures,
with explicit threshold-based reporting and uncertainty intervals, because stable discrimination alone
did not guarantee probability reliability in imbalanced outcome settings. Fifth, validation design
should follow patient-level splitting as a default and incorporate nested cross-validation when
hyperparameter tuning was performed, supplemented by external validation using site-based
separation where multi-center data were available, because these procedures provided stronger
evidence of transportability. Sixth, subgroup performance reporting should be treated as a routine
requirement, including stratification by sex, age group, and site, with complementary error auditing
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that characterized false positives and false negatives by image quality and anatomical coverage,
because these analyses clarified where the model performed consistently and where performance
variability concentrated. Seventh, reproducibility enablers should be implemented systematically
through controlled random seeds, deterministic training configurations where feasible, detailed
hyperparameter disclosure, and versioned code and dataset tracking, because these practices improved
replicability and facilitated peer verification. Finally, reporting should adhere to established Al-in-
medical-imaging checklists and include clear descriptions of model architecture, training regime, data
partitions, and bias-control safeguards, because complete reporting improved credibility and enabled
more accurate evidence synthesis across studies using similar imaging modalities and outcome
definitions.

LIMITATIONS

This study had several limitations that should be considered when interpreting the quantitative
findings and the reported model performance. First, the retrospective observational design relied on
routinely collected clinical imaging and outcome records, which introduced variability in acquisition
protocols, scanner vendors, reconstruction pipelines, and documentation practices across sites;
although harmonized preprocessing and site-aware validation were applied, residual heterogeneity
may have influenced feature representations and contributed to unmeasured distributional differences.
Second, outcome labeling depended on electronic health record and registry documentation, and even
with endpoint adjudication rules, misclassification risk remained due to coding error, incomplete
capture of out-of-network events, and variability in follow-up duration; such label noise can attenuate
estimated associations and affect calibration. Third, the study used a single index imaging examination
per patient to preserve independence, which reduced within-patient correlation but also limited the
ability to model longitudinal imaging trajectories or to exploit repeated-measures information that may
carry prognostic value. Fourth, moderate class imbalance was present for the cardiovascular event
outcome, which can affect threshold-dependent performance and can lead to optimistic impressions if
evaluation relies heavily on rank-based discrimination; multiple metrics were reported, yet prevalence
sensitivity remained an inherent constraint in rare-event prediction. Fifth, the composite constructs
were operationalized through aggregation of multiple extracted measures, and while internal
consistency estimates were acceptable, Cronbach’s alpha provided only one reliability perspective and
did not fully address temporal stability, inter-site measurement invariance, or the clinical
interpretability of latent deep-learning features. Sixth, model comparison was conducted under a
consistent training protocol, but architecture performance can be sensitive to hyperparameter choices
and compute budgets; even with nested validation, the selected settings reflected the feasible tuning
space and may not represent the absolute best attainable configuration for each architecture family.
Seventh, external validation was evaluated within the available multi-center dataset structure, yet
generalizability to entirely new health systems, distinct population risk profiles, or alternative imaging
sequences was not directly established; transportability therefore remained bounded by the range of
sites and protocols represented in the cohort. Finally, explainability and error auditing were conducted
to characterize failure modes, but attribution visualizations and region-based error summaries do not
guarantee causal interpretability, and spurious correlations may still have contributed to predictions
in ways that were difficult to fully detect using observational data alone.
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